Discrete compactness for the hp version of rectangular edge finite elements

被引:29
作者
Boffi, Daniele [1 ]
Costabel, Martin
Dauge, Monique
Demkowicz, Leszek
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Univ Rennes 1, Inst Math, IRMAR, F-35042 Rennes, France
[3] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Maxwell equations; hp finite elements; discrete compactness; edge elements; eigenvalue approximation;
D O I
10.1137/04061550X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discretization of Maxwell eigenvalue problems with edge finite elements involves a simultaneous use of two discrete subspaces of H-1 and H( curl), reproducing the exact sequence condition. Kikuchi's discrete compactness property, along with appropriate approximability conditions, implies the convergence of discrete eigenpairs to the exact ones. In this paper we prove the discrete compactness property for the edge element approximation of Maxwell's eigenpairs on general hp adaptive rectangular meshes. Hanging nodes, yielding 1-irregular meshes, are covered, and the order of the used elements can vary from one rectangle to another, thus allowing for a real hp adaptivity. As a particular case, our analysis covers the convergence result for the p-method.
引用
收藏
页码:979 / 1004
页数:26
相关论文
共 43 条
[1]   hp-approximation theory for BDFM and RT finite elements on quadrilaterals [J].
Ainsworth, M ;
Pinchedez, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2047-2068
[2]  
[Anonymous], 1982, MATH APPL COMPUT
[3]  
[Anonymous], MATAPLI B SOC MATH A
[4]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[5]  
Arnold DouglasN., 2002, Proceedings_of_the_ICM, V1, P137
[6]   REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA .1. BOUNDARY-VALUE PROBLEMS FOR LINEAR ELLIPTIC EQUATION OF 2ND ORDER [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :172-203
[7]  
Babuska I., 1991, Finite Element Methods, V2, P641
[8]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[9]   A note on the de Rham complex and a discrete compactness property [J].
Boffi, D .
APPLIED MATHEMATICS LETTERS, 2001, 14 (01) :33-38
[10]   Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes [J].
Boffi, D ;
Kikuchi, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :265-273