Extendable cycles in multipartite tournaments

被引:6
作者
Guo, YB [1 ]
Volkmann, L
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math C, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
multipartite tournaments; cycles; extendable cycles;
D O I
10.1007/s00373-003-0548-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-partite tournament is an orientation of a complete n-partite graph. If D is a strongly connected n-partite (ngreater than or equal to3) tournament, then we shall prove that every partite set of D has at least one vertex which lies on a cycle C-m of each length m for m is an element of {3,4,...n} such that V(C-3)subset ofV(C-4)subset of...subset ofV(C-n), where V(C-m) is the vertex set of C-m for . This result extends those of Bondy [2], Guo and Volkmann [4], Gutin [6], Moon [8], and Yeo [12].
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
  • [41] Almost regular multipartite tournaments containing a Hamiltonian path through a given arc
    Volkmann, L
    Winzen, S
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 267 - 278
  • [42] ON THE NUMBER OF DISJOINT 4-CYCLES IN REGULAR TOURNAMENTS
    Ma, Fuhong
    Yan, Jin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 491 - 498
  • [43] Vertex disjoint 4-cycles in bipartite tournaments
    Balbuena, C.
    Gonzalez-Moreno, D.
    Olsen, M.
    DISCRETE MATHEMATICS, 2018, 341 (04) : 1103 - 1108
  • [44] Paths with a given number of vertices from each partite set in regular multipartite tournaments
    Volkmann, Lutz
    Winzen, Stefan
    DISCRETE MATHEMATICS, 2006, 306 (21) : 2724 - 2732
  • [45] Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments
    Volkmann, L
    Yeo, A
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 267 - 276
  • [46] On the Strong n-partite Tournaments with Exactly Two Cycles of Length n − 1
    Qiao-ping Guo
    Yu-bao Guo
    Sheng-jia Li
    Chun-fang Li
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 710 - 717
  • [47] Longest cycles in almost regular 3-partite tournaments
    Volkmann, Lutz
    DISCRETE MATHEMATICS, 2006, 306 (22) : 2931 - 2942
  • [48] A characterization of rich c-partite (c ≥ 8) tournaments without (c + 2)-cycles
    Zhang J.
    Wang Z.
    Yan J.
    Discrete Mathematics and Theoretical Computer Science, 2023, 252
  • [49] ON THE n-PARTITE TOURNAMENTS WITH EXACTLY n - m+1 CYCLES OF LENGTH m
    Guo, Qiaoping
    Meng, Wei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 75 - 82
  • [50] On the Strong n-partite Tournaments with Exactly Two Cycles of Length n-1
    Guo, Qiao-ping
    Guo, Yu-bao
    Li, Sheng-jia
    Li, Chun-fang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 710 - 717