Extendable cycles in multipartite tournaments

被引:6
作者
Guo, YB [1 ]
Volkmann, L
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math C, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
multipartite tournaments; cycles; extendable cycles;
D O I
10.1007/s00373-003-0548-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-partite tournament is an orientation of a complete n-partite graph. If D is a strongly connected n-partite (ngreater than or equal to3) tournament, then we shall prove that every partite set of D has at least one vertex which lies on a cycle C-m of each length m for m is an element of {3,4,...n} such that V(C-3)subset ofV(C-4)subset of...subset ofV(C-n), where V(C-m) is the vertex set of C-m for . This result extends those of Bondy [2], Guo and Volkmann [4], Gutin [6], Moon [8], and Yeo [12].
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
  • [31] On the connectivity of close to regular multipartite tournaments
    Volkmann, L
    Winzen, S
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (09) : 1437 - 1452
  • [32] All regular multipartite tournaments that are cycle complementary
    Volkmann, L
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 255 - 266
  • [33] A note on the cardinality of certain classes of unlabeled multipartite tournaments
    Gutin, G
    DISCRETE MATHEMATICS, 1998, 186 (1-3) : 277 - 280
  • [34] Toppling kings in multipartite tournaments by introducing new kings
    Brcanov, Dejan
    Petrovic, Vojislav
    DISCRETE MATHEMATICS, 2010, 310 (19) : 2550 - 2554
  • [35] Hamiltonicity, pancyclicity, and full cycle extendability in multipartite tournaments
    Zhang, Zan-Bo
    Zhang, Xiaoyan
    Gutin, Gregory
    Lou, Dingjun
    JOURNAL OF GRAPH THEORY, 2021, 96 (02) : 171 - 191
  • [36] On the 3-kings and 4-kings in multipartite tournaments
    Tan, B. P.
    DISCRETE MATHEMATICS, 2006, 306 (21) : 2702 - 2710
  • [37] Strong subtournaments containing a given vertex in regular multipartite tournaments
    Volkmann, Lutz
    Winzen, Stefan
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5516 - 5521
  • [38] Cycles of length three and four in tournaments
    Chan, Timothy F. N.
    Grzesik, Andrzej
    Kral, Daniel
    Noel, Jonathan A.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [39] A multipartite Ramsey number for odd cycles
    Benevides, Fabricio Siqueira
    JOURNAL OF GRAPH THEORY, 2012, 71 (03) : 293 - 316
  • [40] On cycles in regular 3-partite tournaments
    Volkmann, L
    DISCRETE MATHEMATICS, 2006, 306 (12) : 1198 - 1206