Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries

被引:100
|
作者
Li, Li [1 ]
Zhang, Xiaoxiao [1 ]
Chen, Renjie [1 ]
Zhao, Taolin [1 ]
Lu, Jun [2 ]
Wu, Feng [1 ]
Amine, Khalil [2 ]
机构
[1] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
Spent lithium-ion battery; Leaching solution; Li-rich cathode material; Oxalic acid co-precipitation; COBALT OXIDE; RECOVERY; ELECTRODES; LICOO2; COPRECIPITATION; CAPACITY; OXALATE; ACID; MN;
D O I
10.1016/j.jpowsour.2013.10.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich layered oxide Li1.2Co0.13Ni0.13Mn0.54O2 has been successfully re-synthesized using the ascorbic acid leaching solution of spent lithium-ion batteries as the raw materials. A combination of oxalic acid co-precipitation, hydrothermal and calcination processes was applied to synthesize this material. For comparison, a fresh sample with the same composition has been also synthesized from the commercial raw materials using the same method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Xray photoelectron spectroscopy (XPS) and electrochemical measurements are carried out to characterize these samples. XRD results indicate that both samples have the layered alpha-NaFeO2 structures with a space group of R(3) over bar m. No other crystalline phase was detected by XRD. The electrochemical results show that the re-synthesized and fresh-synthesized sample can deliver discharge capacities as high as 258.8 and 264.2 mAh g(-1) at the first cycle, respectively. After 50 cycles, discharge capacities of 225.1 and 228 mAh g(-1) can be obtained with capacity retention of 87.0 and 86.3%, respectively. This study suggests that the leaching solution from spent lithium ion batteries can be recycled to synthesize Li-rich cathode materials with good electrochemical performance. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 34
页数:7
相关论文
共 50 条
  • [1] Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery
    ChenQiang Du
    Fei Zhang
    ChenXiang Ma
    JunWei Wu
    ZhiYuan Tang
    XinHe Zhang
    Deyang Qu
    Ionics, 2016, 22 : 209 - 218
  • [2] Hierarchical microspheres and nanoscale particles: Effects of morphology on electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries
    Wu, Feng
    Wang, Hui
    Bai, Ying
    Li, Yu
    Wu, Chuan
    Chen, Guanghai
    Liu, Lu
    Ni, Qiao
    Wang, Xinquan
    Zhou, Jiang
    SOLID STATE IONICS, 2017, 300 : 149 - 156
  • [3] Effect of Na Doping on the Electrochemical Performance of Li1.2Ni0.13Co0.13Mn0.54O2 Cathode for Lithium-Ion Batteries
    Hashem, Ahmed M.
    Abdel-Ghany, Ashraf E.
    El-Tawil, Rasha S.
    Mauger, Alain
    Julien, Christian M.
    SUSTAINABLE CHEMISTRY, 2022, 3 (02): : 131 - 148
  • [4] Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance
    Zhou, Lin
    Liu, Jing
    Huang, Lisi
    Jiang, Na
    Zheng, Qiaoji
    Lin, Dunmin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (12) : 3467 - 3477
  • [5] Li1.2Mn0.54Ni0.13Co0.13O2 nanosheets with porous structure as a high-performance cathode material for lithium-ion batteries
    Gao, Zhi
    Sun, Wenliang
    Pan, Xiaoliang
    Xie, Shikun
    Liu, Lijun
    Xie, Chengning
    Yuan, Huiling
    RSC ADVANCES, 2021, 11 (58) : 36588 - 36595
  • [6] Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries
    Jin, Xue
    Xu, Qunjie
    Yuan, Xiaolei
    Zhou, Luozeng
    Xia, Yongyao
    ELECTROCHIMICA ACTA, 2013, 114 : 605 - 610
  • [7] Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries
    Feng, Xin
    Gao, Yurui
    Ben, Liubin
    Yang, Zhenzhong
    Wang, Zhaoxiang
    Chen, Liquan
    JOURNAL OF POWER SOURCES, 2016, 317 : 74 - 80
  • [8] Enhanced structural and electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode with polyaniline polymer for lithium-ion batteries
    Xiangwan Lai
    Guorong Hu
    Zhongdong Peng
    Yanbing Cao
    Weigang Wang
    Ke Du
    Ionics, 2022, 28 : 3113 - 3125
  • [9] Enhanced structural and electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode with polyaniline polymer for lithium-ion batteries
    Lai, Xiangwan
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Wang, Weigang
    Du, Ke
    IONICS, 2022, 28 (07) : 3113 - 3125
  • [10] Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries
    Zhang, Jie
    Lei, Zhihong
    Wang, Jiulin
    NuLi, Yanna
    Yang, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (29) : 15821 - 15829