Second Universal Limit of Wave Segment Propagation in Excitable Media

被引:13
|
作者
Kothe, A. [1 ]
Zykov, V. S. [1 ]
Engel, H. [1 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
关键词
KINEMATICS; PATTERNS;
D O I
10.1103/PhysRevLett.103.154102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A free-boundary approach is applied to derive universal relationships between the excitability and the velocity and the shape of stabilized wave segments in a broad class of excitable media. In the earlier discovered low excitability limit wave segments approach critical fingers. We demonstrate the existence of a second universal limit (a motionless circular shaped spot) in highly excitable media. Analytically obtained asymptotic relationships and interpolation formula connecting both excitability limits are in good quantitative agreement with results from numerical simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] UNIVERSAL LIMIT OF SPIRAL WAVE-PROPAGATION IN EXCITABLE MEDIA
    KARMA, A
    PHYSICAL REVIEW LETTERS, 1991, 66 (17) : 2274 - 2277
  • [2] Wave Propagation in Inhomogeneous Excitable Media
    Zykov, Vladimir S.
    Bodenschatz, Eberhard
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 9, 2018, 9 : 435 - 461
  • [3] Wave propagation in heterogeneous excitable media
    Schebesch, I.
    Engel, H.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (04):
  • [4] Wave propagation in heterogeneous excitable media
    Schebesch, I
    Engel, H
    PHYSICAL REVIEW E, 1998, 57 (04): : 3905 - 3910
  • [5] Asymptotic wave propagation in excitable media
    Bernus, Olivier
    Vigmond, Edward
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [6] Choreographing wave propagation in excitable media
    Day, C
    PHYSICS TODAY, 2002, 55 (08) : 21 - 21
  • [7] Wave propagation in heterogeneous bistable and excitable media
    Alonso, S.
    Loeber, J.
    Baer, M.
    Engel, H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 187 (01): : 31 - 40
  • [8] Wave propagation in spatially distributed excitable media
    Yang, JB
    Kalliadasis, S
    Merkin, JH
    Scott, SK
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (02) : 485 - 509
  • [9] Wave propagation in heterogeneous bistable and excitable media
    S. Alonso
    J. Löber
    M. Bär
    H. Engel
    The European Physical Journal Special Topics, 2010, 187 : 31 - 40
  • [10] Stationary propagation of a wave segment along an inhomogeneous excitable stripe
    Gao, Xiang
    Zhang, Hong
    Zykov, Vladimir
    Bodenschatz, Eberhard
    NEW JOURNAL OF PHYSICS, 2014, 16