Plant nitrate transporters: from gene function to application

被引:269
作者
Fan, Xiaorong [1 ,2 ]
Naz, Misbah [1 ]
Fan, Xiaoru [1 ,2 ]
Xuan, Wei [2 ]
Miller, Anthony J. [3 ]
Xu, Guohua [1 ,2 ]
机构
[1] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Agr Univ, Minist Agr, Key Lab Plant Nutr & Fertilizat Lower Middle Reac, Nanjing 210095, Jiangsu, Peoples R China
[3] John Innes Inst, Metab Biol Dept, Norwich Res Pk, Norwich NR4 7UH, Norfolk, England
基金
英国生物技术与生命科学研究理事会;
关键词
Crop; gene function; nitrate transporter; nitrogen use efficiency; NITROGEN-USE EFFICIENCY; PARTNER PROTEIN OSNAR2.1; LONG-DISTANCE TRANSPORT; ANION CHANNEL SLAC1; ORYZA-SATIVA L; ARABIDOPSIS NITRATE; ROOT ARCHITECTURE; PLASMA-MEMBRANE; MEDICAGO-TRUNCATULA; FAMILY-MEMBERS;
D O I
10.1093/jxb/erx011
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant nitrate transporters were first identified and functionally characterized more than 20 years ago. They are encoded at least by four gene families, NRT1 (NPF), NRT2, CLC, and SLAC1/SLAH. In this review, we overview the functions of the nitrate transporters in relation to their potential use as targets for improving crop nitrogen use efficiency. These functions include their roles in root architecture and nutrient acquisition; vacuole nitrate and protein storage; nutrient allocation from source to sink; sensing both abiotic and biotic stresses; the ionic balance of nitrate with potassium, chloride and cellular pH; and the circadian clock-regulated carbon and nitrogen balance. We provide and discuss some examples of the use of nitrate transporter genes and their regulators in improving plant growth and development, nitrogen use efficiency, and resistance to some abiotic stresses. We propose several strategies for effectively using nitrate transporters to achieve higher crop yields and nitrogen use efficiency by using gene transformation or genome editing or molecular marker-assisted breeding.
引用
收藏
页码:2463 / 2475
页数:13
相关论文
共 146 条
[1]   Phenotyping two tomato genotypes with different nitrogen use efficiency [J].
Abenavoli, Maria Rosa ;
Longo, Caterina ;
Lupini, Antonio ;
Miller, Anthony J. ;
Araniti, Fabrizio ;
Mercati, Francesco ;
Princi, Maria P. ;
Sunseri, Francesco .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 107 :21-32
[2]   Nitrate, a signal relieving seed dormancy in Arabidopsis [J].
Alboresi, A ;
Gestin, C ;
Leydecker, MT ;
Bedu, M ;
Meyer, C ;
Truong, HN .
PLANT CELL AND ENVIRONMENT, 2005, 28 (04) :500-512
[3]   Characterization of the Arabidopsis Nitrate Transporter NRT1.6 Reveals a Role of Nitrate in Early Embryo Development [J].
Almagro, Anabel ;
Lin, Shan Hua ;
Tsay, Yi Fang .
PLANT CELL, 2008, 20 (12) :3289-3299
[4]   Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots [J].
Alvarez, Jose M. ;
Riveras, Eleodoro ;
Vidal, Elena A. ;
Gras, Diana E. ;
Contreras-Lopez, Orlando ;
Tamayo, Karem P. ;
Aceituno, Felipe ;
Gomez, Isabel ;
Ruffel, Sandrine ;
Lejay, Laurence ;
Jordana, Xavier ;
Gutierrez, Rodrigo A. .
PLANT JOURNAL, 2014, 80 (01) :1-13
[5]   Members of BTB Gene Family of Scaffold Proteins Suppress Nitrate Uptake and Nitrogen Use Efficiency [J].
Araus, Viviana ;
Vidal, Elena A. ;
Puelma, Tomas ;
Alamos, Simon ;
Mieulet, Delphine ;
Guiderdoni, Emmanuel ;
Gutierrez, Rodrigo A. .
PLANT PHYSIOLOGY, 2016, 171 (02) :1523-1532
[6]   Functional Assessment of the Medicago truncatula NIP/LATD Protein Demonstrates That It Is a High-Affinity Nitrate Transporter [J].
Bagchi, Rammyani ;
Salehin, Mohammad ;
Adeyemo, O. Sarah ;
Salazar, Carolina ;
Shulaev, Vladimir ;
Sherrier, D. Janine ;
Dickstein, Rebecca .
PLANT PHYSIOLOGY, 2012, 160 (02) :906-916
[7]   Residues Important for Nitrate/Proton Coupling in Plant and Mammalian CLC Transporters [J].
Bergsdorf, Eun-Yeong ;
Zdebik, Anselm A. ;
Jentsch, Thomas J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (17) :11184-11193
[8]  
Bouguyon E, 2015, NAT PLANTS, V1, DOI [10.1038/NPLANTS.2015.15, 10.1038/nplants.2015.15]
[9]   A deletion in the nitrate high affinity transporter NRT2.1 alters metabolomic and transcriptomic responses to Pseudomonas syringae [J].
Camanes, Gemma ;
Pastor, Victoria ;
Cerezo, Miguel ;
Garcia-Agustin, Pilar ;
Flors Herrero, Victor .
PLANT SIGNALING & BEHAVIOR, 2012, 7 (06) :619-622
[10]   Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network [J].
Castaings, Loren ;
Marchive, Chloe ;
Meyer, Christian ;
Krapp, Anne .
JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (04) :1391-1397