Ulam-Hyers Stability and Well-Posedness of Fixed Point Problems for α-λ-Contraction Mapping in Metric Spaces

被引:17
作者
Kutbi, Marwan Amin [1 ]
Sintunavarat, Wutiphol [2 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[2] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Rangsit Ctr, Pathum Thani 12121, Thailand
关键词
THEOREMS; SET;
D O I
10.1155/2014/268230
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Ulam-Hyers stability and the well-posedness of the fixed point problem for new type of generalized contraction mapping, so called alpha-lambda-contraction mapping. The results in this paper generalize and unify several results in the literature such as the Banach contraction principle.
引用
收藏
页数:6
相关论文
共 26 条
[1]   PPF dependent fixed point theorems for an αc-admissible non-self mapping in the Razumikhin class [J].
Agarwal, Ravi P. ;
Kumam, Poom ;
Sintunavarat, Wutiphol .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[2]   G-β-ψ contractive-type mappings and related fixed point theorems [J].
Alghamdi, Maryam A. ;
Karapinar, Erdal .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[3]   Mizoguchi-Takahashi's Fixed Point Theorem with α, η Functions [J].
Ali, Muhammad Usman ;
Kamran, Tayyab ;
Sintunavarat, Wutiphol ;
Katchang, Phayap .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[4]   Ulam-Hyers Stability Results for Fixed Point Problems via α-ψ-Contractive Mapping in (b)-Metric Space [J].
Bota, Monica-Felicia ;
Karapinar, Erdal ;
Mlesnite, Oana .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[5]  
Bota-Boriceanu MF, 2011, AN STIINT U AL I-MAT, V57, P65
[6]   A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces [J].
Brzdek, Janusz ;
Cieplinski, Krzysztof .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) :68-75
[7]   A fixed point approach to the stability of functional equations in non-Archimedean metric spaces [J].
BrzdeK, Janusz ;
Cieplinski, Krzysztof .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :6861-6867
[8]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732
[9]   Fixed Points and Generalized Hyers-Ulam Stability [J].
Cadariu, L. ;
Gavruta, L. ;
Gavruta, P. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[10]  
DEBLASI FS, 1989, CR ACAD SCI I-MATH, V308, P51