Enhanced hydrogen evolution via interlaced Ni3S2/MoS2 heterojunction photocatalysts with efficient interfacial contact and broadband absorption

被引:57
作者
Guo, Shaohui [1 ,2 ,3 ]
Yang, Lin [1 ,2 ]
Zhang, Yuanyuan [1 ,2 ]
Huang, Zhixiang [4 ]
Ren, Xingang [4 ]
Sha, Wei E. I. [5 ]
Li, Xuanhua [1 ,2 ,3 ]
机构
[1] Northwestern Polytech Univ & Shaanxi Joint Lab Gr, Sch Mat Sci & Engn, Ctr Nano Energy Mat, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Inst Res & Dev, Shenzhen, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan, Hubei, Peoples R China
[4] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, 3 Feixi Rd, Hefei 230039, Anhui, Peoples R China
[5] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni3S2; MoS2; Interfacial contact; Heterostructure; Photocatalytic hydrogen evolution; HYBRID STRUCTURES; NANOSHEETS; HETEROSTRUCTURES; NIS; COCATALYST; ARRAYS;
D O I
10.1016/j.jallcom.2018.03.329
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of transition-metal sulfides, such as nickel sulfides (e.g., Ni3S2), as catalysts for the hydrogen evolution reaction is one potential solution to environmental pollution and energy crisis. However, its limited utilization of visible light and high recombination ratio of photoinduced electronehole pairs suppress its photocatalytic activity. The key issue in improving photocatalytic efficiency lies in fabricating a p-n heterojunctionwith efficient interfacial contact and broadband absorption. Here, we developed amethod for fabricating an interlaced Ni3S2/MoS2 heterostructure with close interfacial contact. In our fabrication approach, a porous Ni3S2 scaffold is prepared by chemical vapor deposition and a hydrothermal method is used to prepare a Ni3S2/MoS2 photocatalyst with close interfacial contact. The numerous interfaces of the interlaced Ni3S2/MoS2 heterostructures promote effective electronehole pair separation and facilitate electron transfer. Meanwhile, the hybrid Ni3S2/MoS2 nanostructures favor broadband absorption extending from 300 to 800 nm. As a result, the hybrid Ni3S2/MoS2 exhibits a remarkable rate of hydrogen evolution (540.75 mmol g(-1) h(-1)), which is 5.71 and 3.89 times greater than those of pure Ni3S2 andMoS(2), respectively, under otherwise identical conditions. The results of this work are significant for developing promising transition-metal sulfide heterostructures in the field of hydrogen evolution by photocatalyticwater splitting. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 480
页数:8
相关论文
共 46 条
[1]   NiS nanoparticle decorated MoS2 nanosheets as efficient promoters for enhanced solar H2 evolution over ZnxCd1-xS nanorods [J].
An, Changhua ;
Feng, Juan ;
Liu, Junxue ;
Wei, Guijuan ;
Du, Jiao ;
Wang, Hui ;
Jin, Shengye ;
Zhang, Jun .
INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (06) :1042-1047
[2]  
An T., 2016, J MATER CHEM A, V4, P7549
[3]   Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts [J].
Bai, Song ;
Yang, Li ;
Wang, Chunlei ;
Lin, Yue ;
Lu, Junling ;
Jiang, Jun ;
Xiong, Yujie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (49) :14810-14814
[4]   Bismuth-rich Bi4O5X2 (X = Br, and I) nanosheets with dominant {101} facets exposure for photocatalytic H2 evolution [J].
Bai, Yang ;
Chen, Ting ;
Wang, Pingquan ;
Wang, Li ;
Ye, Liqun .
CHEMICAL ENGINEERING JOURNAL, 2016, 304 :454-460
[5]   Preparation of Ni3S2 and Ni3S2-Ni Nanosheets via Solution Based Processes [J].
Busupalli, Balanagulu ;
Date, Kalyani ;
Datar, Suwarna ;
Prasad, Bhagavatula L. V. .
CRYSTAL GROWTH & DESIGN, 2015, 15 (06) :2584-2588
[6]   Raman spectroscopy of nickel sulfide Ni3S2 [J].
Cheng, Zhe ;
Abernathy, Harry ;
Liu, Meilin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (49) :17997-18000
[7]   Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting [J].
Daeneke, Torben ;
Dahr, Nripen ;
Atkin, Paul ;
Clark, Rhiannon M. ;
Harrison, Christopher J. ;
Brkljaca, Robert ;
Pillai, Naresh ;
Zhang, Bao Yue ;
Zavabeti, Ali ;
Ippolito, Samuel J. ;
Berean, Kyle J. ;
Ou, Jian Zhen ;
Strano, Michael S. ;
Kalantar-zadeh, Kourosh .
ACS NANO, 2017, 11 (07) :6782-6794
[8]   Effect of Surface Self-Heterojunction Existed in BixY1-xVO4 on Photocatalytic Overall Water Splitting [J].
Fang, Wenjian ;
Liu, Junying ;
Yang, Dong ;
Wei, Zhidong ;
Jiang, Zhi ;
Shangguan, Wenfeng .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (08) :6578-6584
[9]   High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting [J].
Feng, Liang-Liang ;
Yu, Guangtao ;
Wu, Yuanyuan ;
Li, Guo-Dong ;
Li, Hui ;
Sun, Yuanhui ;
Asefa, Tewodros ;
Chen, Wei ;
Zou, Xiaoxin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14023-14026
[10]   Au NPs@MoS2 Sub-Micrometer Sphere-ZnO Nanorod Hybrid Structures for Efficient Photocatalytic Hydrogen Evolution with Excellent Stability [J].
Guo, Shaohui ;
Li, Xuanhua ;
Zhu, Jinmeng ;
Tong, Tengteng ;
Wei, Bingqing .
SMALL, 2016, 12 (41) :5692-5701