Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation

被引:210
作者
Li, Shuang [1 ]
Song, Shiji [1 ]
Huang, Gao [2 ]
Ding, Zhengming [3 ]
Wu, Cheng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Domain adaptation; feature extraction; subspace learning; KERNEL;
D O I
10.1109/TIP.2018.2839528
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.
引用
收藏
页码:4260 / 4273
页数:14
相关论文
共 50 条
  • [31] Learning Feature Alignment Architecture for Domain Adaptation
    Yue, Zhixiong
    Guo, Pengxin
    Zhang, Yu
    Liang, Christy
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] Domain-invariant feature learning with label information integration for cross-domain classification
    Jiang L.
    Wu J.
    Zhao S.
    Li J.
    Neural Computing and Applications, 2024, 36 (21) : 13107 - 13126
  • [33] Transferable Feature Selection for Unsupervised Domain Adaptation
    Yan, Yuguang
    Wu, Hanrui
    Ye, Yuzhong
    Bi, Chaoyang
    Lu, Min
    Liu, Dapeng
    Wu, Qingyao
    Ng, Michael K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5536 - 5551
  • [34] Discriminative information preservation: A general framework for unsupervised visual Domain Adaptation
    Sanodiya, Rakesh Kumar
    Yao, Leehter
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [35] Class Discriminative Maximum Mean and Covariance Discrepancy for Unsupervised Domain Adaptation
    Zhu, Ting
    Zheng, Yixiang
    Pu, Jiang
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 226 - 230
  • [36] Discriminative and informative joint distribution adaptation for unsupervised domain adaptation
    Yang, Liran
    Zhong, Ping
    KNOWLEDGE-BASED SYSTEMS, 2020, 207
  • [37] Nonconvex and discriminative transfer subspace learning for unsupervised domain adaptation
    Liu, Yueying
    Luo, Tingjin
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (02)
  • [38] Cycle-reconstructive subspace learning with class discriminability for unsupervised domain adaptation
    Xu, Yayun
    Yan, Hua
    PATTERN RECOGNITION, 2022, 129
  • [39] Learning Domain-Invariant Discriminative Features for Heterogeneous Face Recognition
    Yang, Shanmin
    Fu, Keren
    Yang, Xiao
    Lin, Ye
    Zhang, Jianwei
    Peng, Cheng
    IEEE ACCESS, 2020, 8 : 209790 - 209801
  • [40] Transfer Domain Class Clustering for Unsupervised Domain Adaptation
    Fan, Yunxin
    Yan, Gang
    Li, Shuang
    Song, Shiji
    Wang, Wei
    Peng, Xinping
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES FOR RAIL TRANSPORTATION (EITRT) 2017: ELECTRICAL TRACTION, 2018, 482 : 827 - 835