Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation

被引:210
|
作者
Li, Shuang [1 ]
Song, Shiji [1 ]
Huang, Gao [2 ]
Ding, Zhengming [3 ]
Wu, Cheng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Domain adaptation; feature extraction; subspace learning; KERNEL;
D O I
10.1109/TIP.2018.2839528
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.
引用
收藏
页码:4260 / 4273
页数:14
相关论文
共 50 条
  • [21] Distribution Alignment and Discriminative Feature Learning for Domain Adaptation in Hyperspectral Image Classification
    Huang, Yi
    Peng, Jiangtao
    Ning, Yujie
    Cao, Qiang
    Sun, Weiwei
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [22] A Novel Framework for Multi-Source Domain Adaptation with Discriminative Feature Learning
    Jangala, Sampreeth
    Sanodiya, Rakesh Kumar
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [23] Learning discriminative feature via a generic auxiliary distribution for unsupervised domain adaptation
    Chen, Qipeng
    Zhang, Haofeng
    Ye, Qiaolin
    Zhang, Zheng
    Yang, Wankou
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (01) : 175 - 185
  • [24] Distribution Alignment and Discriminative Feature Learning for Domain Adaptation in Hyperspectral Image Classification
    Huang, Yi
    Peng, Jiangtao
    Ning, Yujie
    Cao, Qiang
    Sun, Weiwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Learning discriminative feature via a generic auxiliary distribution for unsupervised domain adaptation
    Qipeng Chen
    Haofeng Zhang
    Qiaolin Ye
    Zheng Zhang
    Wankou Yang
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 175 - 185
  • [26] Discriminative Feature Mining and Alignment for Unsupervised Domain Adaptation
    Xiang, Jing
    Cao, Guitao
    Zhang, Xinyue
    Zhang, Hanxiu
    Wu, Chunwei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [27] TRANSFERABLE DISCRIMINATIVE FEATURE MINING FOR UNSUPERVISED DOMAIN ADAPTATION
    Zhao, Lingjun
    Deng, Wanxia
    Kuang, Gangyao
    Hu, Dewen
    Liu, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1259 - 1263
  • [28] A discriminative feature mapping approach to heterogeneous domain adaptation
    Fang, Wen-Chieh
    Chiang, Yi-Ting
    PATTERN RECOGNITION LETTERS, 2018, 106 : 13 - 19
  • [29] On Learning Invariant Representations for Domain Adaptation
    Zhao, Han
    des Combes, Remi Tachet
    Zhang, Kun
    Gordon, Geoffrey J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [30] Domain-invariant and Patch-discriminative Feature Learning for General Deepfake Detection
    Zhang, Jian
    Ni, Jiangqun
    Nie, Fan
    Huang, Jiwu
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 21 (02)