Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation

被引:210
|
作者
Li, Shuang [1 ]
Song, Shiji [1 ]
Huang, Gao [2 ]
Ding, Zhengming [3 ]
Wu, Cheng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Domain adaptation; feature extraction; subspace learning; KERNEL;
D O I
10.1109/TIP.2018.2839528
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.
引用
收藏
页码:4260 / 4273
页数:14
相关论文
共 50 条
  • [11] Probability-Based Graph Embedding Cross-Domain and Class Discriminative Feature Learning for Domain Adaptation
    Wang, Wenxu
    Shen, Zhencai
    Li, Daoliang
    Zhong, Ping
    Chen, Yingyi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 72 - 87
  • [12] Discriminative Invariant Alignment for Unsupervised Domain Adaptation
    Lu, Yuwu
    Li, Desheng
    Wang, Wenjing
    Lai, Zhihui
    Zhou, Jie
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1871 - 1882
  • [13] Domain adaptation based on domain-invariant and class-distinguishable feature learning using multiple adversarial networks
    Fan, Cangning
    Liu, Peng
    Xiao, Ting
    Zhao, Wei
    Tang, Xianglong
    NEUROCOMPUTING, 2020, 411 : 178 - 192
  • [14] Visual domain adaptation via transfer feature learning
    Tahmoresnezhad, Jafar
    Hashemi, Sattar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 50 (02) : 585 - 605
  • [15] Compact class-conditional domain invariant learning for multi-class domain adaptation
    Lee, Woojin
    Kim, Hoki
    Lee, Jaewook
    PATTERN RECOGNITION, 2021, 112
  • [16] Visual domain adaptation via transfer feature learning
    Jafar Tahmoresnezhad
    Sattar Hashemi
    Knowledge and Information Systems, 2017, 50 : 585 - 605
  • [17] Deep Domain Adaptation Model for Bearing Fault Diagnosis with Domain Alignment and Discriminative Feature Learning
    An, Jing
    Ai, Ping
    Liu, Dakun
    SHOCK AND VIBRATION, 2020, 2020
  • [18] Discriminative active learning for domain adaptation
    Zhou, Fan
    Shui, Changjian
    Yang, Shichun
    Huang, Bincheng
    Wang, Boyu
    Chaib-draa, Brahim
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [19] Learning emotion-discriminative and domain-invariant features for domain adaptation in speech emotion recognition
    Mao, Qirong
    Xu, Guopeng
    Xue, Wentao
    Gou, Jianping
    Zhan, Yongzhao
    SPEECH COMMUNICATION, 2017, 93 : 1 - 10
  • [20] Discriminative and domain invariant subspace alignment for visual tasks
    Samaneh Rezaei
    Jafar Tahmoresnezhad
    Iran Journal of Computer Science, 2019, 2 (4) : 219 - 230