Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation

被引:210
作者
Li, Shuang [1 ]
Song, Shiji [1 ]
Huang, Gao [2 ]
Ding, Zhengming [3 ]
Wu, Cheng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Domain adaptation; feature extraction; subspace learning; KERNEL;
D O I
10.1109/TIP.2018.2839528
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.
引用
收藏
页码:4260 / 4273
页数:14
相关论文
共 50 条
  • [1] Discriminative Invariant Alignment for Unsupervised Domain Adaptation
    Lu, Yuwu
    Li, Desheng
    Wang, Wenjing
    Lai, Zhihui
    Zhou, Jie
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1871 - 1882
  • [2] Semi-Supervised Domain Adaptation Using Explicit Class-Wise Matching for Domain-Invariant and Class-Discriminative Feature Learning
    Ngo, Ba Hung
    Park, Jae Hyeon
    Cho, Sung In
    IEEE ACCESS, 2021, 9 : 128467 - 128480
  • [3] Structure Consistency and Class Discriminative Feature Learning for Heterogeneous Domain Adaptation
    Niu, Chang
    Shang, Junyuan
    Huang, Junchu
    Wang, Yifan
    Zhou, Zhiheng
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION SYSTEMS (ICCIS), 2018, : 217 - 221
  • [4] Domain adaptation based on domain-invariant and class-distinguishable feature learning using multiple adversarial networks
    Fan, Cangning
    Liu, Peng
    Xiao, Ting
    Zhao, Wei
    Tang, Xianglong
    NEUROCOMPUTING, 2020, 411 : 178 - 192
  • [5] Joint Clustering and Discriminative Feature Alignment for Unsupervised Domain Adaptation
    Deng, Wanxia
    Liao, Qing
    Zhao, Lingjun
    Guo, Deke
    Kuang, Gangyao
    Hu, Dewen
    Liu, Li
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7842 - 7855
  • [6] Discriminative Radial Domain Adaptation
    Huang, Zenan
    Wen, Jun
    Chen, Siheng
    Zhu, Linchao
    Zheng, Nenggan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1419 - 1431
  • [7] Visual domain adaptation via transfer feature learning
    Tahmoresnezhad, Jafar
    Hashemi, Sattar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 50 (02) : 585 - 605
  • [8] Compact class-conditional domain invariant learning for multi-class domain adaptation
    Lee, Woojin
    Kim, Hoki
    Lee, Jaewook
    PATTERN RECOGNITION, 2021, 112
  • [9] Learning emotion-discriminative and domain-invariant features for domain adaptation in speech emotion recognition
    Mao, Qirong
    Xu, Guopeng
    Xue, Wentao
    Gou, Jianping
    Zhan, Yongzhao
    SPEECH COMMUNICATION, 2017, 93 : 1 - 10
  • [10] Joint category-level and discriminative feature learning networks for unsupervised domain adaptation
    Zhang, Pengyu
    Huang, Junchu
    Zhou, Zhiheng
    Chen, Zengqun
    Shang, Junyuan
    Yang, Zhiwei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (06) : 8499 - 8510