Long cycles in 4-connected planar graphs

被引:8
作者
Cui, Qing [1 ]
Hu, Yumei [1 ,2 ]
Wang, Jian [1 ]
机构
[1] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
Hamilton cycle; Tutte path; Contractible subgraph; PATHS;
D O I
10.1016/j.disc.2007.11.059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a 4-connected planar graph on n vertices. Malkevitch conjectured that if G contains a cycle of length 4, then G contains a cycle of length k for every k is an element of {n, n - 1, ... , 3}. This conjecture is true for every k is an element of {n, n - 1, ... , n - 6} with k >= 3. In this paper, we prove that G also has a cycle of length it - 7 provided n >= 10. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1051 / 1059
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 1963, Proceedings of the London Mathematical Society
[2]  
[Anonymous], 1931, Ann. Math., DOI DOI 10.2307/1968197
[3]   Cycles in 4-connected planar graphs [J].
Chen, GT ;
Fan, GH ;
Yu, XX .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (06) :763-780
[4]  
Malkevitch Joseph., 1988, Selected topics in graph theory 3, P169
[5]   UNCONTRACTABLE 4-CONNECTED GRAPHS [J].
MARTINOV, N .
JOURNAL OF GRAPH THEORY, 1982, 6 (03) :343-344
[6]  
Sanders DP, 1996, J GRAPH THEOR, V21, P43, DOI 10.1002/(SICI)1097-0118(199601)21:1<43::AID-JGT6>3.0.CO
[7]  
2-M
[8]  
Sanders DP, 1997, J GRAPH THEOR, V24, P341, DOI 10.1002/(SICI)1097-0118(199704)24:4<341::AID-JGT6>3.0.CO
[9]  
2-O
[10]   4-CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN [J].
THOMAS, R ;
YU, XX .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (01) :114-132