Connected domination and spanning trees with many leaves

被引:60
作者
Caro, Y [1 ]
West, DB
Yuster, R
机构
[1] Univ Haifa Oranim, Dept Math, IL-36006 Tivon, Israel
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
connectivity; domination; spanning trees;
D O I
10.1137/S0895480199353780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected graph. A connected dominating set S subset of V is a dominating set that induces a connected subgraph of G. The connected domination number of G, denoted gamma(c)(G), is the minimum cardinality of a connected dominating set. Alternatively, \V\ - gamma(c)(G) is the maximum number of leaves in a spanning tree of G. Let delta denote the minimum degree of G. We prove that gamma(c)(G) less than or equal to \V\ln(delta + 1)/delta + 1(1 + o(delta)(1)). Two algorithms that construct a set this good are presented. One is a sequential polynomial time algorithm, while the other is a randomized parallel algorithm in RNC.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 19 条
[1]   TRANSVERSAL NUMBERS OF UNIFORM HYPERGRAPHS [J].
ALON, N .
GRAPHS AND COMBINATORICS, 1990, 6 (01) :1-4
[2]  
Arseneau L., 1997, Journal of Combinatorial Mathematics and Combinatorial Computing, V24, P185
[3]   Some inequalities about connected domination number [J].
Bo, C ;
Liu, BL .
DISCRETE MATHEMATICS, 1996, 159 (1-3) :241-245
[4]  
CARO Y, 1990, ARS COMBINATORIA, V29C, P49
[5]   PERMUTATION GRAPHS - CONNECTED DOMINATION AND STEINER TREES [J].
COLBOURN, CJ ;
STEWART, LK .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :179-189
[6]   DISTANCE-HEREDITARY GRAPHS, STEINER TREES, AND CONNECTED DOMINATION [J].
DATRI, A ;
MOSCARINI, M .
SIAM JOURNAL ON COMPUTING, 1988, 17 (03) :521-538
[7]  
Duchet P., 1982, N HOLLAND MATH STUD, V62, P71
[8]   SPANNING-TREES IN GRAPHS OF MINIMUM DEGREE 4 OR 5 [J].
GRIGGS, JR ;
WU, MS .
DISCRETE MATHEMATICS, 1992, 104 (02) :167-183
[9]  
Hedetniemi S. T., 1984, Graph Theory and Combinatorics, P209
[10]   BIBLIOGRAPHY ON DOMINATION IN GRAPHS AND SOME BASIC DEFINITIONS OF DOMINATION PARAMETERS [J].
HEDETNIEMI, ST ;
LASKAR, RC .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :257-277