Regularity properties for evolution families governed by non-autonomous forms

被引:5
作者
Laasri, Hafida [1 ]
机构
[1] Fernuniv, Lehrgebiete Anal, Fak Math & Informat, D-58084 Hagen, Germany
关键词
Evolution family; Maximal regularity; Nonautonomous forms; MAXIMAL REGULARITY; PERTURBATION;
D O I
10.1007/s00013-018-1175-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Evolution families are the non-autonomous counterpart of operator semigroups in the well-posedness theory of non-autonomous evolution equations. This note is devoted to fundamental operator theoretical properties, beginning with norm continuity-which we regard as a fingerprint of analyticity. While no known analogue of analytic semigroups is known in the non-autonomous case, we give a sufficient condition for norm-continuity of evolution families. Furthermore, we develop a theory of compact and trace class evolution families. The abstract results are applied to the Laplace operator with time dependent Robin boundary conditions.
引用
收藏
页码:187 / 201
页数:15
相关论文
共 29 条
[1]   Non-autonomous right and left multiplicative perturbations and maximal regularity [J].
Achache, Mahdi ;
Ouhabaz, El Maati .
STUDIA MATHEMATICA, 2018, 242 (01) :1-29
[2]  
Acquistapace P., 1987, Rend. Semin. Mat. Univ. Padova, V78, P47
[3]  
Acquistapace P., 1998, DIFFERENTIAL INTEGRA, V1, P433
[4]  
[Anonymous], 2003, SOBOLEV SPACES
[5]  
[Anonymous], 1997, AM MATH SOC
[6]  
[Anonymous], 2000, GRAD TEXT M
[7]  
[Anonymous], 2005, London Mathematical Society Monographs Series
[8]  
ARENDT W., HEAT KERN 9 INT SEM
[9]   LP-maximal regularity for non-autonomous evolution equations [J].
Arendt, Wolfgang ;
Chill, Ralph ;
Fornaro, Simona ;
Poupaud, Cesar .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (01) :1-26
[10]   J. L. Lions' problem on maximal regularity [J].
Arendt, Wolfgang ;
Dier, Dominik ;
Fackler, Stephan .
ARCHIV DER MATHEMATIK, 2017, 109 (01) :59-72