Learning Temporal Regularity in Video Sequences

被引:926
作者
Hasan, Mahmudul [1 ]
Choi, Jonghyun [2 ]
Neumann, Jan [2 ]
Roy-Chowdhury, Amit K. [1 ]
Davis, Larry S. [3 ]
机构
[1] UC Riverside, Riverside, CA 92521 USA
[2] Comcast Labs DC, Washington, DC USA
[3] Univ Maryland, College Pk, MD 20742 USA
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR.2016.86
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Perceiving meaningful activities in a long video sequence is a challenging problem due to ambiguous definition of 'meaningfulness' as well as clutters in the scene. We approach this problem by learning a generative model for regular motion patterns (termed as regularity) using multiple sources with very limited supervision. Specifically, we propose two methods that are built upon the autoencoders for their ability to work with little to no supervision. We first leverage the conventional handcrafted spatio-temporal local features and learn a fully connected autoencoder on them. Second, we build a fully convolutional feed-forward autoencoder to learn both the local features and the classifiers as an end-to-end learning framework. Our model can capture the regularities from multiple datasets. We evaluate our methods in both qualitative and quantitative ways-showing the learned regularity of videos in various aspects and demonstrating competitive performance on anomaly detection datasets as an application.
引用
收藏
页码:733 / 742
页数:10
相关论文
共 60 条
[1]   Robust real-time unusual event detection using multiple fixed-location monitors [J].
Adam, Amit ;
Rivlin, Ehud ;
Shimshoni, Ilan ;
Reinitz, David .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (03) :555-560
[2]  
[Anonymous], 2014, CVPR
[3]  
[Anonymous], 2011, ICCV
[4]  
[Anonymous], 2011, ICCV
[5]  
[Anonymous], 2014, ECCV
[6]  
[Anonymous], 2005, CVPR
[7]  
[Anonymous], 2013, ICASSP
[8]  
[Anonymous], 2013, P NIPS
[9]  
[Anonymous], 2015, CVPR
[10]  
[Anonymous], ADV NEURAL INFORM PR