Wavelet transform on the circle and the real line: A unified group-theoretical treatment

被引:12
作者
Calixto, M.
Guerrero, J.
机构
[1] Univ Murcia, Fac Informat, Dept Matemat Aplicada, E-30100 Murcia, Spain
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
关键词
D O I
10.1016/j.acha.2006.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a unified group-theoretical derivation of the continuous wavelet transform (CWT) on the circle S-1 and the real line R, following the general formalism of coherent states (CS) associated to unitary square integrable (modulo a subgroup, possibly) representations of the group SL(2, R). A general procedure for obtaining unitary representations of a group G of affine transformations on a space of signals L-2(X, dx) is described, relating carrier spaces X to (first- or higher-order) "polarization subalgebras" P-X. We also provide explicit admissibility and continuous frame conditions for wavelets on S-1 and discuss the Euclidean limit in terms of group contraction. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 229
页数:26
相关论文
共 28 条
[1]   HIGHER-ORDER POLARIZATION ON THE POINCARE GROUP AND THE POSITION-OPERATOR [J].
ALDAYA, V ;
BISQUERT, J ;
GUERRERO, J ;
NAVARROSALAS, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5375-5390
[2]  
Aldaya V., 1996, Reports on Mathematical Physics, V37, P387, DOI 10.1016/0034-4877(96)84075-4
[3]   Vacuum radiation and symmetry breaking in conformally invariant quantum field theory [J].
Aldaya, V ;
Calixto, M ;
Cerveró, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (02) :325-354
[4]   Higher-order differential operators on a Lie group and quantization [J].
Aldaya, V ;
Guerrero, J ;
Marmo, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01) :3-11
[5]   THE RELATIVISTIC BARGMANN TRANSFORM [J].
ALDAYA, V ;
GUERRERO, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22) :L1175-L1181
[6]   QUANTIZATION AS A CONSEQUENCE OF THE SYMMETRY GROUP - AN APPROACH TO GEOMETRIC-QUANTIZATION [J].
ALDAYA, V ;
DEAZCARRAGA, JA .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (07) :1297-1305
[7]   ALGEBRAIC QUANTIZATION ON A GROUP AND NONABELIAN CONSTRAINTS [J].
ALDAYA, V ;
NAVARROSALAS, J ;
RAMIREZ, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (04) :541-556
[8]   Lie group representations and quantization [J].
Aldaya, V ;
Guerrero, J .
REPORTS ON MATHEMATICAL PHYSICS, 2001, 47 (02) :213-240
[9]  
Aldaya V, 1998, SYMMETRIES IN SCIENCE X, P1
[10]  
Ali ST., 2000, GRAD TEXT C