Local well-posedness of semilinear space-time fractional Schrodinger equation

被引:12
|
作者
Su, Xiaoyan [1 ]
Zhao, Shiliang [2 ]
Li, Miao [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
关键词
Space-time fractional Schrodinger equation; L-s decay estimates; Local well-posedness; CAUCHY-PROBLEM;
D O I
10.1016/j.jmaa.2019.06.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The semilinear space-time fractional Schrodinger equation is considered. First, we give the explicit form for the fundamental solutions by using the Fox H-functions in order to establish some L-s decay estimates. After that, we give some space-time estimates for the mild solutions from which the local well-posedness is derived on some proper Banach space. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1244 / 1265
页数:22
相关论文
共 50 条
  • [1] Local well-posedness for the space-time Monopole equation in Lorenz gauge
    Bournaveas, Nikolaos
    Candy, Timothy
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (01): : 67 - 78
  • [2] LOCAL WELL-POSEDNESS FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION
    Aloui, Lassaad
    Tayachi, Slim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5409 - 5437
  • [3] Local well-posedness for the inhomogeneous nonlinear Schrodinger equation in Hs(Rn)
    An, JinMyong
    Kim, JinMyong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [4] The well-posedness for semilinear time fractional wave equations on RN
    Zhou, Yong
    He, Jia Wei
    Alsaedi, Ahmed
    Ahmad, Bashir
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 2981 - 3003
  • [5] LOCAL WELL-POSEDNESS FOR THE FOURTH ORDER SCHRODINGER EQUATION1
    Zhang, Hua
    Wu, Hong-Feng
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 92 - 101
  • [6] Local well-posedness for the space–time Monopole equation in Lorenz gauge
    Nikolaos Bournaveas
    Timothy Candy
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 67 - 78
  • [7] Local Well-Posedness for the Hyperelastic Rots Equation in Besov Space
    Shenggui LIU
    JournalofMathematicalResearchwithApplications, 2016, 36 (02) : 213 - 222
  • [8] Local well-posedness for the nonlocal derivative nonlinear Schrodinger equation in Besov spaces
    Barros, Vanessa
    de Moura, Roger
    Santos, Gleison
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 320 - 338
  • [9] Local well-posedness for the inhomogeneous biharmonic nonlinear Schrodinger equation in Sobolev spaces
    An, JinMyong
    Kim, JinMyong
    Ryu, PyongJo
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (01): : 239 - 258
  • [10] Local well-posedness for a fractional KdV-type equation
    Roger P. de Moura
    Ailton C. Nascimento
    Gleison N. Santos
    Journal of Evolution Equations, 2022, 22