Local well-posedness of semilinear space-time fractional Schrodinger equation

被引:11
|
作者
Su, Xiaoyan [1 ]
Zhao, Shiliang [2 ]
Li, Miao [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
关键词
Space-time fractional Schrodinger equation; L-s decay estimates; Local well-posedness; CAUCHY-PROBLEM;
D O I
10.1016/j.jmaa.2019.06.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The semilinear space-time fractional Schrodinger equation is considered. First, we give the explicit form for the fundamental solutions by using the Fox H-functions in order to establish some L-s decay estimates. After that, we give some space-time estimates for the mild solutions from which the local well-posedness is derived on some proper Banach space. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1244 / 1265
页数:22
相关论文
共 50 条
  • [1] Local well-posedness for the space-time Monopole equation in Lorenz gauge
    Bournaveas, Nikolaos
    Candy, Timothy
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (01): : 67 - 78
  • [2] WELL-POSEDNESS AND CONVERGENCE FOR TIME-SPACE FRACTIONAL STOCHASTIC SCHRODINGER-BBM EQUATION
    Wu, Shang
    Huang, Jianhua
    Li, Yuhong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 1749 - 1767
  • [3] GLOBAL WELL-POSEDNESS FOR THE CUBIC FRACTIONAL SCHRODINGER EQUATION
    Gao, Xinjun
    COLLOQUIUM MATHEMATICUM, 2018, 153 (01) : 81 - 96
  • [4] Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation
    Guo, Boling
    Huo, Zhaohui
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (02) : 247 - 255
  • [6] Local well-posedness of a critical inhomogeneous Schrodinger equation
    Saanouni, Tarek
    Peng, Congming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 10256 - 10273
  • [7] LOCAL WELL-POSEDNESS FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION
    Aloui, Lassaad
    Tayachi, Slim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5409 - 5437
  • [8] Local well-posedness for the Maxwell-Schrodinger equation
    Nakamura, M
    Wada, T
    MATHEMATISCHE ANNALEN, 2005, 332 (03) : 565 - 604
  • [9] Local Well-posedness of Nonlinear Time-fractional Diffusion Equation
    Suechoei, Apassara
    Ngiamsunthorn, Parinya Sa
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 865 - 884
  • [10] The well-posedness for semilinear time fractional wave equations on RN
    Zhou, Yong
    He, Jia Wei
    Alsaedi, Ahmed
    Ahmad, Bashir
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 2981 - 3003