共 50 条
Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+
被引:73
|作者:
Hermoso, JA
Mayoral, T
Faro, M
Gómez-Moreno, C
Sanz-Aparicio, J
Medina, M
机构:
[1] CSIC, Inst Quim Fis Rocasolano, Grp Cristalog Macromol & Biol Estruct, E-28006 Madrid, Spain
[2] Univ Zaragoza, Fac Ciencias, Dept Bioquim & Biol Mol & Celular, E-50009 Zaragoza, Spain
关键词:
ferredoxin-NADP(+) reductase;
coenzyme binding;
NADPH;
NADH;
X-ray structure;
D O I:
10.1016/S0022-2836(02)00388-1
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The flavoenzyme ferredoxin-NADP(+) reductase (FNR) catalyses the production of NADPH in photosynthesis. The three-dimensional structure of FNR presents two distinct domains, one for binding of the FAD prosthetic group and the other for NADP(+) binding. In spite of extensive experiments and different crystallographic approaches, many aspects about how the NADP(+) substrate binds to FNR and how the hydride ion is transferred from FAD to NADP(+) remain unclear. The structure of an complex from Anabaena has been determined by X-ray diffraction analysis of the cocrystallised units to 2.1 Angstrom resolution. Structural perturbation of FNR induced by complex formation produces a narrower cavity in which the 2-phospho-AMP and pyrophosphate portions of the NADP(+) are perfectly bound. In addition, the nicotinamide mononucleotide moiety is placed in a new pocket created near the FAD cofactor with the ribose being in a tight conformation. The crystal structure of this FNR:NADP(+) complex obtained by cocrystallisation displays NADP(+) in an unusual conformation and can be considered as an intermediate state in the process of coenzyme recognition and binding. Structural analysis and comparison with previously reported complexes allow us to postulate a mechanism which would permit efficient hydride transfer to occur. Besides, this structure gives new insights into the postulated formation of the ferredoxin:FNR:NADP(+) ternary complex by prediction of new intermolecular interactions, which could only exist after FNR:NADP(+) complex formation. Finally, structural comparison with the members of the broad FNR structural family also provides an explanation for the high specificity exhibited by FNR for NADP(+)/H versns NAD(+)/H. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1133 / 1142
页数:10
相关论文