Robust controllability of interval fractional order linear time invariant systems

被引:107
作者
Chen, YangQuan [1 ]
Ahn, Hyo-Sung
Xue, Dingyu
机构
[1] Utah State Univ, Dept Elect & Comp Engn, Ctr Self Organizing & Intelligent Syst, Logan, UT 84322 USA
[2] Northeastern Univ, Fac Informat Sci & Engn, Inst Artificial Intelligence & Robot, Shenyang 110004, Peoples R China
关键词
fractional order systems; robust controllability; interval linear time invariant systems; interval matrix; linear dependency of interval vectors;
D O I
10.1016/j.sigpro.2006.02.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider uncertain fractional-order linear time invariant (FO-LTI) systems with interval coefficients. Our focus is on the robust controllability issue for interval FO-LTI systems in state-space form. We revisit the controllability problem for the case when there is no interval uncertainty. It turns out that the controllability check for FO-LTI systems amounts to checking the controllability of conventional integer order state space. Based on this fact, we further show that, for interval FO-LTI systems, the key is to check the linear dependency of a set of interval vectors. Illustrative examples are presented. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2794 / 2802
页数:9
相关论文
共 48 条
[1]  
Ahn HS, 2005, PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, P253
[2]  
Ahn HS, 2005, IEEE DECIS CONTR P, P8070
[3]  
AXTELL M, 1990, PROC NAECON IEEE NAT, P563, DOI 10.1109/NAECON.1990.112826
[4]  
Barmish B.R., 1994, New Tools for Robustness of Linear Systems
[6]  
Bhattacharyya S., 1995, ROBUST CONTROL PARAM
[7]   Coprime factorizations and stability of fractional differential systems [J].
Bonnet, C ;
Partington, JR .
SYSTEMS & CONTROL LETTERS, 2000, 41 (03) :167-174
[8]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]   Robust controllability for a class of uncertain linear time-invariant MIMO systems [J].
Cheng, BW ;
Zhang, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (11) :2022-2027
[10]   Necessary conditions for Schur-stability of interval polynomials [J].
Greiner, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) :740-744