Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures

被引:67
作者
Lepeshov, Sergey [1 ]
Gorodetsky, Andrei [1 ,2 ,3 ]
Krasnok, Alexander [4 ]
Toropov, Nikita [1 ]
Vartanyan, Tigran A. [1 ]
Belov, Pavel [1 ]
Alu, Andrea [4 ]
Rafailov, Edik U. [2 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
[2] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England
[3] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
基金
英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
NEAR-FIELD; SPECTROSCOPY; DYNAMICS;
D O I
10.1038/s41598-018-25013-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advanced nanophotonics penetrates into other areas of science and technology, ranging from applied physics to biology, which results in many fascinating cross-disciplinary applications. It has been recently demonstrated that suitably engineered light-matter interactions at the nanoscale can overcome the limitations of today's terahertz (THz) photoconductive antennas, making them one step closer to many practical implications. Here, we push forward this concept by comprehensive numerical optimization and experimental investigation of a log-periodic THz photoconductive antenna coupled to a silver nanoantenna array. We shed light on the operation principles of the resulting hybrid THz antenna, providing an approach to boost its performance. By tailoring the size of silver nanoantennas and their arrangement, we obtain an enhancement of optical-to-THz conversion efficiency 2-fold larger compared with previously reported results for similar structures, and the strongest enhancement is around 1 THz, a frequency range barely achievable by other compact THz sources. We also propose a cost-effective fabrication procedure to realize such hybrid THz antennas with optimized plasmonic nanostructures via thermal dewetting process, which does not require any post processing and makes the proposed solution very attractive for applications.
引用
收藏
页数:7
相关论文
共 48 条
[1]  
Agio M., 2013, Optical Antennas
[2]   Resonant metasurfaces at oblique incidence: interplay of order and disorder [J].
Albooyeh, M. ;
Kruk, S. ;
Menzel, C. ;
Helgert, C. ;
Kroll, M. ;
Krysinski, A. ;
Decker, M. ;
Neshev, D. N. ;
Pertsch, T. ;
Etrich, C. ;
Rockstuhl, C. ;
Tretyakov, S. A. ;
Simovski, C. R. ;
Kivshar, Yu. S. .
SCIENTIFIC REPORTS, 2014, 4
[3]   Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[4]   Tuning the scattering response of optical nanoantennas with nanocircuit loads [J].
Alu, Andrea ;
Engheta, Nader .
NATURE PHOTONICS, 2008, 2 (05) :307-310
[5]   Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2010, 104 (21)
[6]   PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES [J].
AUSTON, DH ;
CHEUNG, KP ;
SMITH, PR .
APPLIED PHYSICS LETTERS, 1984, 45 (03) :284-286
[7]   Terahertz spectroscopy [J].
Beard, MC ;
Turner, GM ;
Schmuttenmaer, CA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7146-7159
[8]   Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes [J].
Berry, C. W. ;
Wang, N. ;
Hashemi, M. R. ;
Unlu, M. ;
Jarrahi, M. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Principles of Impedance Matching in Photoconductive Antennas [J].
Berry, Christopher W. ;
Jarrahi, Mona .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2012, 33 (12) :1182-1189
[10]   Methods of generating superbroadband terahertz pulses with femtosecond lasers [J].
Bespalov, V. G. ;
Gorodetskii, A. A. ;
Denisyuk, I. Yu. ;
Kozlov, S. A. ;
Krylov, V. N. ;
Lukomskii, G. V. ;
Petrov, N. V. ;
Putilin, S. E. .
JOURNAL OF OPTICAL TECHNOLOGY, 2008, 75 (10) :636-642