Rapid Detection of SARS-CoV-2 RNA in Human Nasopharyngeal Specimens Using Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms

被引:42
作者
Yang, Yanjun [1 ]
Li, Hao [2 ]
Jones, Les [3 ]
Murray, Jackelyn [3 ]
Haverstick, James [4 ]
Naikare, Hemant K. [3 ]
Mosley, Yung-Yi C. [3 ]
Tripp, Ralph A. [3 ]
Ai, Bin [2 ]
Zhao, Yiping [4 ]
机构
[1] Univ Georgia, Coll Engn, Sch Elect & Comp Engn, Athens, GA 30602 USA
[2] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing Key Lab Biopercept & Intelligent Informa, Chongqing 400044, Peoples R China
[3] Univ Georgia, Coll Vet Med, Dept Infect Dis, Athens, GA 30602 USA
[4] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
基金
中国国家自然科学基金;
关键词
surface-enhanced Raman scattering (SERS); silver nanorod array; SARS-CoV-2; detection; machine learning; deep learning; recurrent neural network (RNN); SCATTERING; SERS;
D O I
10.1021/acssensors.2c02194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A rapid and cost-effective method to detect the infection of SARS-CoV-2 is fundamental to mitigating the current COVID-19 with a deep learning algorithm has been developed for the rapid detection of SARS-CoV-2 RNA in human nasopharyngeal swab (HNS) specimens. The SERS sensor was prepared using a silver nanorod array (AgNR) substrate by assembling DNA probes to capture SARS-CoV-2 RNA. The SERS spectra of HNS specimens were collected after RNA hybridization, and the corresponding SERS peaks were identified. The RNA detection range was determined to be 103-109 copies/mL in saline sodium citrate buffer. A recurrent neural network (RNN)-based deep learning model was developed to classify 40 positive and 120 negative specimens with an overall accuracy of 98.9%. For the blind test of 72 specimens, the RNN model gave a 97.2% accuracy prediction for positive specimens and a 100% accuracy for negative specimens. All the detections were performed in 25 min. These results suggest that the DNA-functionalized AgNR array SERS sensor combined with a deep learning algorithm could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 61 条
[1]   Fabrication and characterization of a multiwell array SERS chip with biological applications [J].
Abell, J. L. ;
Driskell, J. D. ;
Dluhy, R. A. ;
Tripp, R. A. ;
Zhao, Y. -P. .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (12) :3663-3670
[2]   Controllable and reversible hot spot formation on silver nanorod arrays [J].
Abell, Justin L. ;
Driskell, Jeremy D. ;
Zhao, Yiping .
CHEMICAL COMMUNICATIONS, 2014, 50 (01) :106-108
[3]   Label-Free Detection of Micro-RNA Hybridization Using Surface-Enhanced Raman Spectroscopy and Least-Squares Analysis [J].
Abell, Justin L. ;
Garren, Jeonifer M. ;
Driskell, Jeremy D. ;
Tripp, Ralph A. ;
Zhao, Yiping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (31) :12889-12892
[4]   Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine [J].
Adir, Omer ;
Poley, Maria ;
Chen, Gal ;
Froim, Sahar ;
Krinsky, Nitzan ;
Shklover, Jeny ;
Shainsky-Roitman, Janna ;
Lammers, Twan ;
Schroeder, Avi .
ADVANCED MATERIALS, 2020, 32 (13)
[5]   Molecular diagnostic technologies for COVID-19: Limitations and challenges [J].
Afzal, Adeel .
JOURNAL OF ADVANCED RESEARCH, 2020, 26 :149-159
[6]   Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip [J].
Alafeef, Maha ;
Dighe, Ketan ;
Moitra, Parikshit ;
Pan, Dipanjan .
ACS NANO, 2020, 14 (12) :17028-17045
[7]   Direct detection of SARS-CoV-2 using non-commercial RT-LAMP reagents on heat-inactivated samples [J].
Alekseenko, Alisa ;
Barrett, Donal ;
Pareja-Sanchez, Yerma ;
Howard, Rebecca J. ;
Strandback, Emilia ;
Ampah-Korsah, Henry ;
Rovsnik, Urska ;
Zuniga-Veliz, Silvia ;
Klenov, Alexander ;
Malloo, Jayshna ;
Ye, Shenglong ;
Liu, Xiyang ;
Reinius, Bjorn ;
Elsasser, Simon J. ;
Nyman, Tomas ;
Sandh, Gustaf ;
Yin, Xiushan ;
Pelechano, Vicent .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]  
anton-paar, PROD DET HANDH RAM S
[9]   Diagnostics to take your breath away [J].
Arnold, Carrie .
NATURE BIOTECHNOLOGY, 2022, 40 (07) :990-993
[10]   Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis [J].
Bastos, Mayara Lisboa ;
Tavaziva, Gamuchirai ;
Abidi, Syed Kunal ;
Campbell, Jonathon R. ;
Haraoui, Louis -Patrick ;
Johnston, James C. ;
Lan, Zhiyi ;
Law, Stephanie ;
MacLean, Emily ;
Trajman, Anete ;
Menzies, Dick ;
Benedetti, Andrea ;
Khan, Faiz Ahmad .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 370