Calculation of Local Bifurcation Points in Piecewise Nonlinear Discrete-Time Dynamical Systems

被引:0
|
作者
Tone, Yusuke [1 ]
Asahara, Hiroyuki [2 ]
Ito, Daisuke [3 ]
Ueta, Tetsushi [4 ]
Aihara, Kazuyuki [5 ,6 ,7 ,8 ]
Kousaka, Takuji [9 ]
机构
[1] Oita Univ, Engn, Oita 3, Japan
[2] Fukuoka Univ, Dept Elect Engn, Fukuoka, Japan
[3] Univ Tokushima, Fac Engn, Tokushima, Japan
[4] Univ Tokushima, Ctr Adm Informat Technol, Tokushima, Japan
[5] Univ Tokyo, Dept Elect Engn, Tokyo 1138654, Japan
[6] Univ Tokyo, Inst Ind Sci, Tokyo 1138654, Japan
[7] Univ Tokyo, Collaborat Res Ctr Innovat Math Modeling, Tokyo 1138654, Japan
[8] Univ Tokyo, Grad Sch Engn, Dept Elect Engn, Tokyo 1138654, Japan
[9] Oita Univ, Fac Engn, Oita, Japan
基金
日本学术振兴会;
关键词
piecewise nonlinear discrete-time system; local bifurcation; bifurcation analysis; BORDER-COLLISION BIFURCATIONS; SMOOTH MAPS;
D O I
10.1002/ecj.11771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a method for calculation of local bifurcation points in discrete-time dynamical systems with piecewise nonlinear characteristics (PNDDS). First, an -dimensional PNDDS, which has two piecewise nonlinear maps, is shown and its variational equation is derived. Next, a calculation method for the local bifurcation points that utilizes the conditional equation for the periodic solution and the characteristic equation is proposed. It is essential to calculate the derivatives of the map with an initial value and with a bifurcation parameter to obtain the bifurcation points continuously in the parameter space. The above calculation process is a key component of the proposed method, and is explained in detail. Finally, we apply the proposed method to a two-dimensional PNDDS and calculate the local bifurcation points in order to confirm the validity of the proposed method.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [1] Calculation method of local bifurcation point in piecewise nonlinear discrete-time dynamical systems
    Tone, Yusuke
    Asahara, Hiroyuki
    Ito, Daisuke
    Ueta, Tetsushi
    Aihara, Kazuyuki
    Kousaka, Takuji
    IEEJ Transactions on Electronics, Information and Systems, 2014, 134 (05) : 729 - 736
  • [2] Bifurcation in a Discrete-Time Piecewise Constant Dynamical System
    Hou, Chenmin
    Cheng, Sui Sun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [3] Computational method of border-collision bifurcation point for piecewise nonlinear discrete-time dynamical systems
    Fujii, Takayuki
    Asahara, Hiroyuki
    Ito, Daisuke
    Ueta, Tetsushi
    Kousaka, Takuji
    IEEJ Transactions on Electronics, Information and Systems, 2015, 135 (04) : 468 - 469
  • [4] A precise calculation of bifurcation points for periodic solution in nonlinear dynamical systems
    Chen, Y. M.
    Liu, J. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 1190 - 1195
  • [5] Local Stabilization of Discrete-Time Nonlinear Systems
    Lendek, Zsofia
    Lauber, Jimmy
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (01) : 52 - 62
  • [6] STATE ESTIMATION OF CONSTRAINED NONLINEAR DISCRETE-TIME DYNAMICAL SYSTEMS
    Hassan, Mohamed Fahim
    Zribi, Mohamed
    Tawfik, Mohamed
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2010, 6 (10): : 4449 - 4470
  • [7] Perturbation methods for nonlinear autonomous discrete-time dynamical systems
    Universita degli Studi di L'Aquila, L'Aquila, Italy
    Nonlinear Dyn, 4 (317-331):
  • [8] Dissipativity theory for discrete-time nonlinear stochastic dynamical systems
    Haddad, Wassim M.
    Lanchares, Manuel
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (11) : 6293 - 6314
  • [9] STOCHASTIC OBSERVABILITY OF NONLINEAR DISCRETE-TIME DYNAMICAL-SYSTEMS
    SUNAHARA, Y
    KISHINO, K
    AIHARA, S
    INTERNATIONAL JOURNAL OF CONTROL, 1974, 19 (04) : 719 - 732
  • [10] Perturbation methods for nonlinear autonomous discrete-time dynamical systems
    Luongo, A
    NONLINEAR DYNAMICS, 1996, 10 (04) : 317 - 331