Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2

被引:14
|
作者
Liu, Chang [1 ,2 ]
Yi, ChangJiang [1 ,2 ]
Wang, XingYu [1 ,2 ]
Shen, JianLei [1 ,2 ]
Xie, Tao [1 ,2 ]
Yang, Lin [1 ,2 ]
Fennel, Tom [1 ,2 ,3 ]
Stuhr, Uwe [3 ]
Li, ShiLiang [1 ,2 ,4 ]
Weng, HongMing [1 ,2 ,4 ,5 ,6 ]
Shi, YouGuo [1 ,2 ,4 ,6 ]
Liu, EnKe [1 ,4 ]
Luo, HuiQian [1 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
[3] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
[5] CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[6] Huairou Natl Comprehens Sci Ctr, Phys Sci Lab, Beijing 101400, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Weyl semimetal; magneto-elastic coupling; topological materials; elastic neutron scattering; ferromagnetism;
D O I
10.1007/s11433-020-1655-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Co3Sn2S2 is a recently identified magnetic Weyl semimetal in Shandite compounds. Upon cooling, Co3Sn2S2 undergoes a ferromagnetic transition with c-axis polarized moments (similar to 0.3 mu (B)/Co) around T-C = 175 K, followed by another magnetic anomaly around T-A approximate to 140 K. A large intrinsic anomalous Hall effect is observed in the magnetic state below T-C with a maximum of anomalous Hall angle near T-A. Here, we report an elastic neutron scattering on the crystalline lattice of Co3Sn2S2 in a magnetic field up to 10 T. A strongly anisotropic magnetoelastic response is observed-while only a slight enhancement of the Bragg peaks is observed when B//c. The in-plane magnetic field (B//ab) dramatically suppresses the Bragg peak intensity probably by tilting the moments and lattice toward the external field direction. The in-plane magnetoelastic response commences from T-C, and as it is further strengthened below T-A, it becomes nonmonotonic against the field between T-A and T-C because of the competition from another in-plane magnetic order. These results suggest that a magnetic field can be employed to tune the Co3Sn2S2 lattice and its related topological states.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Variation of structural, optical and magnetic properties with Co-doping in Sn1-xCoxO2 nanoparticles
    Zhuang, Shendong
    Xu, Xiaoyong
    Pang, Yaru
    Li, He
    Yu, Bin
    Hu, Jingguo
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 327 : 24 - 27
  • [32] Magnetic Field-Enhanced Thermoelectric Performance in Dirac Semimetal Cd3As2 Crystals with Different Carrier Concentrations
    Wang, Honghui
    Luo, Xigang
    Peng, Kunling
    Sun, Zeliang
    Shi, Mengzhu
    Ma, Donghui
    Wang, Naizhou
    Wu, Tao
    Ying, Jianjun
    Wang, Zhengfei
    Chen, Xianhui
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (37)
  • [33] Electrical and anisotropic magnetic properties in layered Mn1/3TaS2 crystals
    Zhang, Hongwei
    Wei, Wensen
    Zheng, Guolin
    Lu, Jianwei
    Wu, Min
    Zhu, Xiangde
    Tang, Jin
    Ning, Wei
    Han, Yuyan
    Ling, Langsheng
    Yang, Jiyong
    Gao, Wenshuai
    Qin, Yongliang
    Tian, Mingliang
    APPLIED PHYSICS LETTERS, 2018, 113 (07)
  • [34] STRUCTURAL AND MAGNETIC PROPERTIES OF NANOCRYSTALLINE Sn0.98Co0.02O2 UNDER DIFFERENT ANNEALING CONDITIONS
    Mohanty, Sunita
    Ravi, S.
    Jena, H. S.
    Manivannan, V.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2011, 10 (1-2) : 313 - 317
  • [35] Effect of annealing temperature on the dielectric and magnetic response of (Co, Zn) co-doped SnO2 nanoparticles
    Khan, Rajwali
    Zulfiqar
    Rahman, Muneeb-Ur
    Fashu, Simbarashe
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (03) : 2673 - 2679
  • [36] Magnetic and plasmonic properties in noncompensated Fe-Sn codoped In2O3 nanodot arrays
    Wang, Ya-Nan
    Jiang, Feng-Xian
    Yan, Li-Juan
    Xu, Xiao-Hong
    APPLIED SURFACE SCIENCE, 2018, 441 : 415 - 419
  • [37] Crystal growth and anisotropic magnetic properties of quasi-two-dimensional (Fe1-xNix)2P2S6
    Selter, S.
    Shemerliuk, Y.
    Sturza, M., I
    Wolter, A. U. B.
    Buchner, B.
    Aswartham, S.
    PHYSICAL REVIEW MATERIALS, 2021, 5 (07)
  • [38] Magnetic structure and magnetoelectric coupling in the antiferromagnet Co 5 (TeO 3 ) 4 Cl 2
    Yu, B.
    Huang, L.
    Li, J. S.
    Lin, L.
    Garlea, V. Ovidiu
    Zhang, Q.
    Zou, T.
    Zhang, J. C.
    Peng, J.
    Tang, Y. S.
    Zhou, G. Z.
    Zhang, J. H.
    Zheng, S. H.
    Liu, M. F.
    Yan, Z. B.
    Zhou, X. H.
    Dong, S.
    Wan, J. G.
    Liu, J-M.
    PHYSICAL REVIEW B, 2024, 109 (18)
  • [39] Structural, Optical and Magnetic Properties of (In0.90Sn0.05Cu0.05)2O3 Nanoparticles
    Babu, S. Harinath
    Kaleemulla, S.
    Krishna, N. Sai
    Rao, N. Madhusudhana
    Kuppan, M.
    Krishnamoorthi, C.
    Joshi, Girish M.
    Kotnala, R. K.
    Shah, J.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [40] Influence of the grain's morphology and their distribution on surface, electronic and magnetic properties of Sn1-xCoxO2 nanocrystalline Diluted Magnetic Semiconductors.
    Srinivas, K.
    Reddy, P. Venugopal
    NANOTECH CONFERENCE & EXPO 2009, VOL 1, TECHNICAL PROCEEDINGS: NANOTECHNOLOGY 2009: FABRICATION, PARTICLES, CHARACTERIZATION, MEMS, ELECTRONICS AND PHOTONICS, 2009, : 238 - 241