Numerical semigroups: Ap,ry sets and Hilbert series

被引:18
作者
Alfonsin, Jorge L. Ramirez [1 ]
Rodseth, Oystein J. [2 ]
机构
[1] Univ Paris 06, Equipe Combinatoire & Optimisat, F-75252 Paris 05, France
[2] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
Numerical semigroup; Hilbert series; Apery set; Frobenius number; Genus; LINEAR DIOPHANTINE PROBLEM; ARITHMETIC SEQUENCES; FROBENIUS;
D O I
10.1007/s00233-009-9133-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a (1),aEuro broken vertical bar,a (n) be relatively prime positive integers, and let S be the semigroup consisting of all non-negative integer linear combinations of a (1),aEuro broken vertical bar,a (n) . In this paper, we focus our attention on AA-semigroups, that is semigroups being generated by almost arithmetic progressions. After some general considerations, we give a characterization of the symmetric AA-semigroups. We also present an efficient method to determine an Ap,ry set and the Hilbert series of an AA-semigroup.
引用
收藏
页码:323 / 340
页数:18
相关论文
共 27 条
[1]  
ALFONSIN JLR, 1996, COMBINATORICA, V16, P143
[2]  
APERY R, 1946, CR HEBD ACAD SCI, V222, P1198
[3]  
BECK M, 2007, COMPUTING CONTINUOS
[4]  
BRAUER A, 1962, J REINE ANGEW MATH, V220, P211
[5]   PRIME IDEALS WITH GENERIC ZERO XI=TNI [J].
BRESINSKY, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) :329-332
[6]   DIAMETERS OF WEIGHTED DOUBLE LOOP NETWORKS [J].
CHENG, Y ;
HWANG, FK .
JOURNAL OF ALGORITHMS, 1988, 9 (03) :401-410
[7]   ON THE LINEAR DIOPHANTINE PROBLEM OF FROBENIUS [J].
DAVISON, JL .
JOURNAL OF NUMBER THEORY, 1994, 48 (03) :353-363
[8]  
DENHAM G, 2003, ELECT J COMB, V10
[9]   A NOTE ON SYMMETRICAL SEMIGROUPS AND ALMOST ARITHMETIC SEQUENCES [J].
ESTRADA, M ;
LOPEZ, A .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (10) :3903-3905
[10]  
Fel L.G., 2006, Funct. Anal. Other Math, V1, P119, DOI [10.1007/s11853-007-0, 10.1007/s11853-007-0009-5, DOI 10.1007/S11853-007-0009-5]