Obstructions for linear rank-width at most 1

被引:12
作者
Adler, Isolde [1 ]
Farley, Arthur M. [2 ]
Proskurowski, Andrzej [2 ]
机构
[1] Goethe Univ Frankfurt, Inst Informat, D-60325 Frankfurt, Germany
[2] Univ Oregon, Eugene, OR 97403 USA
关键词
Linear rank-width of graphs; Forbidden induced subgraphs; Obstruction set; Vector-minor; Pivot-minor; CLIQUE-WIDTH; GRAPHS; SET;
D O I
10.1016/j.dam.2013.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the set of minimal forbidden induced subgraphs for the class of graphs having linear rank-width at most I. From these we derive both the vertex-minor and pivot-minor obstructions for the class. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 17 条
[1]  
Adler Isolde, LNCS P WG 2 IN PRESS
[2]   DISTANCE-HEREDITARY GRAPHS [J].
BANDELT, HJ ;
MULDER, HM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) :182-208
[3]   A partial k-arboretum of graphs with bounded treewidth [J].
Bodlaender, HL .
THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) :1-45
[4]   CIRCLE GRAPH OBSTRUCTIONS [J].
BOUCHET, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (01) :107-144
[5]   Linear time solvable optimization problems on graphs of bounded clique-width [J].
Courcelle, B ;
Makowsky, JA ;
Rotics, U .
THEORY OF COMPUTING SYSTEMS, 2000, 33 (02) :125-150
[6]   Upper bounds to the clique width of graphs [J].
Courcelle, B ;
Olariu, S .
DISCRETE APPLIED MATHEMATICS, 2000, 101 (1-3) :77-114
[7]  
Diestel R., 1995, COMB PROBAB COMPUT, V4, P27
[8]  
Espelage Wolfgang, 2001, Lecture Notes in Computer Science, V2204, P117, DOI DOI 10.1007/3-540-45477-2_12
[9]  
Ganian R, 2011, LECT NOTES COMPUT SC, V6460, P38, DOI 10.1007/978-3-642-19222-7_5
[10]  
Ganian R, 2009, LECT NOTES COMPUT SC, V5874, P266, DOI 10.1007/978-3-642-10217-2_27