Focused Ion Beam Engineering of Carbon Nanotubes for Optical Rectenna Applications

被引:6
作者
Abbas, Yawar [1 ,2 ]
Khan, Muhammad Umair [2 ,3 ]
Ravaux, Florent [4 ]
Mohammad, Baker [2 ,3 ]
Rezeq, Moh'd [1 ,2 ]
机构
[1] Khalifa Univ, Dept Phys, Abu Dhabi 127788, U Arab Emirates
[2] Khalifa Univ, Syst Chip Lab, Abu Dhabi 127788, U Arab Emirates
[3] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
[4] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi 9639, U Arab Emirates
关键词
optical rectenna; resonance wave-length; focused ion beam; CNTs; nano-engineering; SINGLE; EFFICIENCY; DIODES; FUTURE;
D O I
10.1021/acsanm.2c04353
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The optical rectenna is a device that converts the optical range of electromagnetic radiations to a direct current. Optical antennas, as for the radio frequency (RF) antennas, require an antenna's structure in the range of optical light EM wavelengths, i.e., a few hundred nanometers to a few micrometers. Herein, we demonstrate the optical rectenna effect of single-wall carbon nanotubes (SWCNTs) by cutting them in the resonance lengths of monopole nano-antennas (i.e., lambda/4) of 100, 150, and 200 nm to convert incident red, green, and blue lights into a direct current. The physical engineering (cutting) of SWCNTs dispersed on SiO2/Si, comparable to one-quarter of the incident monochromatic light wavelength (i.e., red, green, and blue), is carried out with high-energy gallium (Ga) ion beams, with the help of a focused ion beam (FIB) system. The rectenna characteristics of these engineered SWCNTs are investigated using conductive mode atomic force microscopy (C-AFM). This unprecedented approach to investigating the optical rectennas will open more directions to study the rectenna effect at the nanometer scale.
引用
收藏
页码:18537 / 18544
页数:8
相关论文
共 42 条
[1]   Translucent Photodetector with Blended Nanowires-Metal Oxide Transparent Selective Electrode Utilizing Photovoltaic and Pyro-Phototronic Coupling Effect [J].
Abbas, Sohail ;
Kumar, Mohit ;
Kim, Dong-Wook ;
Kim, Joondong .
SMALL, 2019, 15 (10)
[2]   Direct detection of electronic states for individual indium arsenide (InAs) quantum dots grown by molecular beam epitaxy [J].
Abbas, Yawar ;
Wen, Boyu ;
Wasilewski, Zbig ;
Ban, Dayan ;
Rezeq, Moh'd .
APPLIED SURFACE SCIENCE, 2022, 590
[3]   Size dependence of charge retention in gold-nanoparticles sandwiched between thin layers of titanium oxide and silicon oxide [J].
Abbas, Yawar ;
Rezeq, Moh'd ;
Nayfeh, Ammar ;
Saadat, Irfan .
APPLIED PHYSICS LETTERS, 2021, 119 (16)
[4]   Improved figures of merit of nano-Schottky diode by embedding and characterizing individual gold nanoparticles on n-Si substrates [J].
Abbas, Yawar ;
Rezk, Ayman ;
Anwer, Shoaib ;
Saadat, Irfan ;
Nayfeh, Ammar ;
Rezeq, Moh'd .
NANOTECHNOLOGY, 2020, 31 (12)
[5]   Photodetection Characteristics of Gold Coated AFM Tips and n-Silicon Substrate nano-Schottky Interfaces [J].
Abbas, Yawar ;
Rezk, Ayman ;
Saadat, Irfan ;
Nayfeh, Ammar ;
Rezeq, Moh'd .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz [J].
Abdel-Rahman, MR ;
González, FJ ;
Boreman, GD .
ELECTRONICS LETTERS, 2004, 40 (02) :116-118
[7]   Photon-Assisted Tunneling in Carbon Nanotube Optical Rectennas: Characterization and Modeling [J].
Anderson, Erik C. ;
Cola, Baratunde A. .
ACS APPLIED ELECTRONIC MATERIALS, 2019, 1 (05) :692-700
[8]   The future of energy supply: Challenges and opportunities [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (1-2) :52-66
[9]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[10]   Nano Antenna Array for Terahertz Detection [J].
Bareiss, Mario ;
Tiwari, Badri N. ;
Hochmeister, Andreas ;
Jegert, Gunther ;
Zschieschang, Ute ;
Klauk, Hagen ;
Fabel, Bernhard ;
Scarpa, Giuseppe ;
Koblmueller, Gregor ;
Bernstein, Gary H. ;
Porod, Wolfgang ;
Lugli, Paolo .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (10) :2751-2757