Competition of edge effects on the electronic properties and excitonic effects in short graphene nanoribbons

被引:8
作者
Lu, Yan [1 ]
Wei, Sheng [1 ]
Jin, Jing [1 ]
Lu, Wengang [2 ,3 ]
Wang, Li [1 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Beijing Key Lab Nanomat & Nanodevices, Beijing 100190, Peoples R China
关键词
exciton effects; short graphene nanoribbons; edge states; spin polarization; tight-binding model; ON-SURFACE SYNTHESIS; OPTICAL-SPECTRA; CONJUGATED POLYMERS; ZIGZAG EDGES; EXCITATIONS; STATE; GAP;
D O I
10.1088/1367-2630/aa5116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the electronic properties and exciton effects in short graphene nanoribbons (SGNRs), which have two armchair edges and two zigzag edges. Our results show that both of these two types of edges have profound effects on the electronic properties and exciton effects. Both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states are alternatively changed between the bulk and the edge states as the lengths of the zigzag edges increase, due to the competition between the states of the two types of edges. The energy gaps, as a function of the lengths of the armchair edges, will then induce two kinds of trends. Furthermore, two kinds of exciton energies and exciton binding energies are found, which can be understood through the two kinds of HOMO and LUMO states in SGNRs. In addition, we find that the three triplet exciton states are not totally energy degenerate in SGNRs due to the spin-polarized states on the zigzag edges.
引用
收藏
页数:10
相关论文
共 46 条
[1]   SINGLET AND TRIPLET EXCITONS IN CONJUGATED POLYMERS [J].
ABE, S ;
YU, J ;
SU, WP .
PHYSICAL REVIEW B, 1992, 45 (15) :8264-8271
[2]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[3]   Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons [J].
Blankenburg, Stephan ;
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Passerone, Daniele ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman ;
Pignedoli, Carlo A. .
ACS NANO, 2012, 6 (03) :2020-2025
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]  
Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]
[7]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128
[8]   Anisotropy and Size Effects on the Optical Spectra of Polycyclic Aromatic Hydrocarbons [J].
Cocchi, Caterina ;
Prezzi, Deborah ;
Ruini, Alice ;
Caldas, Marilia J. ;
Molinari, Elisa .
JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (33) :6507-6513
[9]   Magnetic Correlations in Short and Narrow Graphene Armchair Nanoribbons [J].
Golor, Michael ;
Koop, Cornelie ;
Lang, Thomas C. ;
Wessel, Stefan ;
Schmidt, Manuel J. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[10]   Magnetism and Correlations in Fractionally Filled Degenerate Shells of Graphene Quantum Dots [J].
Guclu, A. D. ;
Potasz, P. ;
Voznyy, O. ;
Korkusinski, M. ;
Hawrylak, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)