Gas diffusion electrodes for H2O2 production and their applications for electrochemical degradation of organic pollutants in water: A review

被引:104
作者
Wang, Jingwen [1 ]
Li, Chaolin [1 ]
Rauf, Muhammad [2 ]
Luo, Haijian [3 ]
Sun, Xue [1 ]
Jiang, Yiqi [1 ]
机构
[1] Harbin Inst Technol Shenzhen, Shenzhen Key Lab Organ Pollut Prevent & Control, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Guangdong, Peoples R China
[3] Harbin Inst Technol Shenzhen, Educ Ctr Expt & Innovat, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas diffusion electrode; Electrochemical advanced oxidation processes; H2O2; electrogeneration; Organic pollutant degradation; Fenton reactions; ADVANCED OXIDATION PROCESSES; UVA PHOTOELECTRO-FENTON; BORON-DOPED DIAMOND; MODIFIED GRAPHITE FELT; HYDROGEN-PEROXIDE SYNTHESIS; MALACHITE GREEN-DYE; FCF AZO-DYE; WASTE-WATER; CARBON-FELT; AQUEOUS-MEDIUM;
D O I
10.1016/j.scitotenv.2020.143459
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nowadays, it is a great challenge to minimize the negative impact of hazardous organic compounds in the environment. Highly efficient hydrogen peroxide (H2O2) production through electrochemicalmethods with gas diffusion electrodes (GDEs) is greatly demand for degradation of organic pollutants that present in drinking water and industrialwastewater. The GDEs as cathodic electrocatalyst manifest more cost-effective, lower energy consumption and higher oxygen utilization efficiency for H2O2 production as compared to other carbonaceous cathodes due to its worthy chemical and physical characteristics. In recent years, the crucial research and practical application of GDE for degradation of organic pollutants have been well developed. In this review, we focus on the novel design, fundamental aspects, influence factors, and electrochemical properties of GDEs. Furthermore, we investigate the generation of H2O2 through electrocatalytic processes and degradation mechanisms of refractory organic pollutants on GDEs. We describe the advanced methodologies towards electrochemical kinetics, which include the enhancement of GDEs electrochemical catalytic activity and mass transfer process. More importantly, we also highlight the other technologies assisted electrochemical process with GDEs to enlarge the practical application for water treatment. In addition, the developmental prospective and the existing research challenges ofGDE-based electrocatalyticmaterials for real applications in H2O2 production andwastewater treatment are forecasted. According to our best knowledge, only few reviewarticles have discussed GDEs in detail for H2O2 production and their applications for degradation of organic pollutants in water. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 185 条
[1]   Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review [J].
Ahmed, Mohammad Boshir ;
Zhou, John L. ;
Huu Hao Ngo ;
Guo, Wenshan ;
Thomaidis, Nikolaos S. ;
Xu, Jiang .
JOURNAL OF HAZARDOUS MATERIALS, 2017, 323 :274-298
[2]   Electro-fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes [J].
Ai, Zhihui ;
Xiao, Haiyan ;
Mei, Tao ;
Liu, Juan ;
Zhang, Lizhi ;
Deng, Kejian ;
Qiu, Jianrong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (31) :11929-11935
[3]   Electrochemical oxidation of organic pollutants for wastewater treatment [J].
Alberto Martinez-Huitle, Carlos ;
Panizza, Marco .
CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 11 :62-71
[4]   A stable CoSP/MWCNTs air-diffusion cathode for the photoelectro-Fenton degradation of organic pollutants at pre-pilot scale [J].
Alcaide, Francisco ;
Alvarez, Garbine ;
Guelfi, Diego R., V ;
Brillas, Enric ;
Sires, Ignasi .
CHEMICAL ENGINEERING JOURNAL, 2020, 379
[5]   Electrochemical mineralization of the azo dye Acid Red 29 (Chromotrope 2R) by photoelectro-Fenton process [J].
Almeida, Lucio Cesar ;
Garcia-Segura, Sergi ;
Arias, Conchita ;
Bocchi, Nerilso ;
Brillas, Enric .
CHEMOSPHERE, 2012, 89 (06) :751-758
[6]   Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: Process optimization by response surface methodology [J].
Almeida, Lucio Cesar ;
Garcia-Segura, Sergi ;
Bocchi, Nerilso ;
Brillas, Enric .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 103 (1-2) :21-30
[7]   Highly efficient electro-generation of H2O2 by adjusting liquid-gas solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction [J].
An, Jingkun ;
Li, Nan ;
Zhao, Qian ;
Qiao, Yujie ;
Wang, Shu ;
Liao, Chengmei ;
Zhou, Lean ;
Li, Tian ;
Wang, Xin ;
Feng, Yujie .
WATER RESEARCH, 2019, 164
[8]   Degradation of Evans Blue diazo dye by electrochemical processes based on Fenton's reaction chemistry [J].
Antonin, Vanessa S. ;
Garcia-Segura, Sergi ;
Santos, Mauro C. ;
Brillas, Enric .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 747 :1-11
[9]   Low tungsten content of nanostructured material supported on carbon for the degradation of phenol [J].
Assumpcao, M. H. M. T. ;
De Souza, R. F. B. ;
Reis, R. M. ;
Rocha, R. S. ;
Steter, J. R. ;
Hammer, P. ;
Gaubeur, I. ;
Calegaro, M. L. ;
Lanza, M. R. V. ;
Santos, M. C. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 :479-486
[10]   Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis [J].
Assumpcao, M. H. M. T. ;
Moraes, A. ;
De Souza, R. F. B. ;
Gaubeur, I. ;
Oliveira, R. T. S. ;
Antonin, V. S. ;
Malpass, G. R. P. ;
Rocha, R. S. ;
Calegaro, M. L. ;
Lanza, M. R. V. ;
Santos, M. C. .
APPLIED CATALYSIS A-GENERAL, 2012, 411 :1-6