Structured heterosymmetric quantum droplets

被引:27
|
作者
Kartashov, Yaroslav, V [1 ,2 ]
Malomed, Boris A. [3 ,4 ,5 ]
Torner, Lluis [1 ,6 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Russian Acad Sci, Inst Spect, Moscow 108840, Russia
[3] Tel Aviv Univ, Fac Engn, Dept Phys Elect, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[4] Tel Aviv Univ, Ctr Light Matter Interact, IL-69978 Tel Aviv, Israel
[5] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[6] Univ Politecn Cataluna, Barcelona 08034, Spain
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
以色列科学基金会;
关键词
BOSE; VORTICES; FIELDS;
D O I
10.1103/PhysRevResearch.2.033522
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We predict that the Lee-Huang-Yang effect makes it possible to create stable quantum droplets (QDs) in binary Bose-Einstein condensates with a heterosymmetric or heteromultipole structure, i.e., different vorticities or multipolarities in their components. The QDs feature flat-top shapes when either chemical potential, mu(1,2), of the droplet approaches an edge of a triangular existence domain in the ( mu(1), mu(2)) plane. QDs with different vorticities of their components are stable against azimuthal perturbations, provided that the norm of one component is large. We also present multipole states in which the interaction with a strong fundamental component balances the repulsion between poles with opposite signs in the other component, leading to the formation of stable bound states. Extended stability domains are obtained for dipole QDs; tripole ones exist but are unstable, while quadrupoles are stable in a narrow region. The results uncover the existence of much richer families of stable binary QDs in comparison to states with identical components.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Integrated structured light architectures
    Lemons, Randy
    Liu, Wei
    Frisch, Josef C.
    Fry, Alan
    Robinson, Joseph
    Smith, Steve R.
    Carbajo, Sergio
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] Quantum criticality of bosonic systems with the Lifshitz dispersion
    Wu, Jianda
    Zhou, Fei
    Wu, Congjun
    PHYSICAL REVIEW B, 2017, 96 (08)
  • [43] Instability and self-propulsion of active droplets along a wall
    Desai, Nikhil
    Michelin, Sebastien
    PHYSICAL REVIEW FLUIDS, 2021, 6 (11):
  • [44] Structured thermal surface for radiative camouflage
    Li, Ying
    Bai, Xue
    Yang, Tianzhi
    Luo, Hailu
    Qiu, Cheng-Wei
    NATURE COMMUNICATIONS, 2018, 9
  • [45] Untwisting of the Helical Structure of Cholesteric Droplets with Homeotropic Surface Anchoring
    Krakhalev, M. N.
    Gardymova, A. P.
    Emel'yanenko, A. V.
    Liu, Jui-Hsiang
    Zyryanov, V. Ya.
    JETP LETTERS, 2017, 105 (01) : 51 - 54
  • [46] Caustic imaging of gallium droplets using mirror electron microscopy
    Kennedy, S. M.
    Zheng, C. X.
    Tang, W. X.
    Paganin, D. M.
    Jesson, D. E.
    ULTRAMICROSCOPY, 2011, 111 (05) : 356 - 363
  • [47] Topological aspects of polarization structured beams
    Kumar, Vijay
    Viswanathan, Nirmal K.
    COMPLEX LIGHT AND OPTICAL FORCES VIII, 2014, 8999
  • [48] Optical activity in the scattering of structured light
    Cameron, Robert P.
    Barnett, Stephen M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (47) : 25819 - 25829
  • [49] Fabrication and electrokinetic motion of electrically anisotropic Janus droplets in microchannels
    Li, Mengqi
    Li, Dongqing
    ELECTROPHORESIS, 2017, 38 (02) : 287 - 295
  • [50] Quantum Turbulence in Quantum Gases
    Madeira, L.
    Caracanhas, M. A.
    dos Santos, F. E. A.
    Bagnato, V. S.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 : 37 - 56