Coincidence points principle for mappings in partially ordered spaces

被引:31
作者
Arutyunov, A. V. [1 ]
Zhukovskiy, E. S. [2 ]
Zhukovskiy, S. E. [1 ]
机构
[1] Peoples Friendship Univ Russia, Moscow 117198, Russia
[2] Tambov State Univ, Tambov 392000, Russia
关键词
Orderly covering mapping; Coincidence point; METRIC-SPACES;
D O I
10.1016/j.topol.2014.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of covering (regularity) for mappings in partially ordered spaces is introduced. Sufficient conditions for the existence of coincidence points and minimal coincidence points of isotone and orderly covering mappings are obtained. These results generalize classical fixed point theorems for isotone mappings. Moreover, the known theorems on coincidence points of covering and Lipschitz mappings in metric spaces are deduced from the obtained results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 33
页数:21
相关论文
共 12 条
[1]  
[Anonymous], 1964, Positive Solutions of Operator Equations
[2]   Covering mappings in metric spaces and fixed points [J].
Arutyunov, A. V. .
DOKLADY MATHEMATICS, 2007, 76 (02) :665-668
[3]   Coincidence points of set-valued mappings in partially ordered spaces [J].
Arutyunov, A. V. ;
Zhukovskiy, E. S. ;
Zhukovskiy, S. E. .
DOKLADY MATHEMATICS, 2013, 88 (03) :727-729
[4]   On coincidence points of mappings in partially ordered spaces [J].
Arutyunov, A. V. ;
Zhukovskiy, E. S. ;
Zhukovskiy, S. E. .
DOKLADY MATHEMATICS, 2013, 88 (03) :710-713
[5]   Stability of Coincidence Points and Properties of Covering Mappings [J].
Arutyunov, A. V. .
MATHEMATICAL NOTES, 2009, 86 (1-2) :153-158
[6]   Locally covering maps in metric spaces and coincidence points [J].
Arutyunov, Aram ;
Avakov, Evgeniy ;
Gel'man, Boris ;
Dmitruk, Andrei ;
Obukhovskii, Valeri .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (01) :105-127
[7]  
Bishop E., 1963, The support functionals of a convex set, ppp. 27, DOI 10.1090/pspum/007/0154092
[8]   PARTIALLY ORDERED SPACES AND METRIC SPACES [J].
DEMARR, R .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (06) :628-&
[9]  
Granas A., 2003, FIXED POINT THEOR-RO, DOI [/10.1007/978-0-387-21593-8, DOI 10.1007/978-0-387-21593-8]
[10]  
LYUSTERNIK LA, 1982, BRIEF COURSE FUNCTIO