Asymptotics for linear difference equations I: Basic theory

被引:29
作者
Elaydi, S [1 ]
机构
[1] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
关键词
asymptotic representation; dichotomy; difference equations; Poincare-Perron;
D O I
10.1080/10236199908808210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present here a unified treatment of asymptotic theory of linear difference equations. This is based on an adapted theory of discrete dichotomy. The obtained results narrow the gap between Poincare's Theorem and (the discrete analogue of) Levinson's Theorem.
引用
收藏
页码:563 / 589
页数:27
相关论文
共 39 条
[1]  
[Anonymous], J DIFFERENCE EQU APP
[2]  
[Anonymous], MATH INTELL
[3]  
Apery R., 1979, Asterisque, V61, P11
[4]  
ASKEY R, 1984, MEMOIRS AM MATH SOC, V300
[5]   BOUNDEDNESS OF SOLUTIONS OF DIFFERENCE-EQUATIONS AND APPLICATION TO NUMERICAL-SOLUTION OF VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BAKKE, VL ;
JACKIEWICZ, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (02) :592-605
[6]  
BALLA K, ASYMPTOTIC BEHAV CER
[7]  
BENZAID Z, 1987, STUD APPL MATH, V77, P195
[8]  
Brunner H., 1982, J. Comput. Appl. Math, V8, P213, DOI [DOI 10.1016/0771-050X(82)90044-4, 10.1016/0771-050X(82)90044-4]
[9]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[10]  
Coffman C. V., 1964, T AM MATH SOC, V110, P22, DOI 10.1090/S0002-9947-1964-0156122-9