On Nonspreading-Type Mappings in Hadamard Spaces

被引:10
作者
Ugwunnadi, Godwin Chidi [1 ]
Izuchkwu, Chinedu [2 ]
Mewomo, Oluwatosin Temitope [2 ]
机构
[1] Univ Eswatini, Private Bag Kwaluseni, Kwaluseni, Eswatini
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2021年 / 39卷 / 05期
关键词
CAT(0) spaces; Generalized k-strictly pseudononspreading mappings; k-strictly pseudononspreading mappings; Generalized asymptotically nonspreading mappings; Nonspreading mappings; Fixed points; CONVERGENCE; THEOREMS;
D O I
10.5269/bspm.41768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a new class of nonspreading-type mappings more general than the class of strictly pseudononspreading and the class of generalized nonspreading mappings. We state and prove some strong convergence theorems of the Mann-type and Ishikawa-type algorithms for approximating fixed points of our class of mappings in Hadamard spaces.
引用
收藏
页码:175 / 197
页数:23
相关论文
共 21 条
[1]   Quasilinearization and curvature of Aleksandrov spaces [J].
Berg, I. D. ;
Nikolaev, I. G. .
GEOMETRIAE DEDICATA, 2008, 133 (01) :195-218
[2]  
Bridson Martin R., 1999, GRUND MATH WISS, V319, DOI [DOI 10.1007/978-3-662-12494-9, 10.1007/978-3-662-12494-9]
[3]  
BRUHAT F, 1972, I HAUTES ETUDES SCI, V0041
[4]  
Dehghan H., 2014, ARXIV14101137VIMATHF
[5]  
Dhompongsa S, 2007, J NONLINEAR CONVEX A, V8, P35
[6]   Fixed points of uniformly lipschitzian mappings [J].
Dhompongsa, S. ;
Kirk, W. A. ;
Sims, Brailey .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :762-772
[7]   On Δ-convergence theorems in CAT(0) spaces [J].
Dhompongsa, S. ;
Panyanak, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) :2572-2579
[8]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Non-expansive Mappings, VVolume 83
[9]   Duality and subdifferential for convex functions on complete CAT(0) metric spaces [J].
Kakavandi, Bijan Ahmadi ;
Amini, Massoud .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) :3450-3455
[10]   A concept of convergence in geodesic spaces [J].
Kirk, W. A. ;
Panyanak, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) :3689-3696