The number of solutions of polynomial-exponential equations

被引:35
作者
Schlickewei, HP
Schmidt, WP
机构
[1] Univ Marburg, Fachbereich Math, D-35032 Marburg, Germany
[2] Univ Colorado, Dept Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
exponential diophantine equations; linear recurrence sequences;
D O I
10.1023/A:1001719425893
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will give explicit bounds for the number of solutions of polynomial-exponential equations. In contrast to earlier work, the bounds are independent of the coefficients of the equations, and they are of only single exponential growth in the number of coefficients.
引用
收藏
页码:193 / 225
页数:33
相关论文
共 19 条
  • [1] [Anonymous], 1959, GRUNDLEHREN MATH WIS
  • [2] On a conjecture of Siegel
    Bombieri, E
    Mueller, J
    [J]. MONATSHEFTE FUR MATHEMATIK, 1998, 125 (04): : 293 - 308
  • [3] Dobrowolski, 1979, ACTA ARITH, V34, P391, DOI DOI 10.4064/AA-34-4-391-401
  • [4] ON S-UNIT EQUATIONS IN 2 UNKNOWNS
    EVERTSE, JH
    GYORY, K
    STEWART, CL
    TIJDEMAN, R
    [J]. INVENTIONES MATHEMATICAE, 1988, 92 (03) : 461 - 477
  • [5] Evertse JH, 1996, COMPOS MATH, V101, P225
  • [6] EVERTSE JH, IN PRESS LINEAR EQUA
  • [7] EVERTSE JH, IN PRESS QUANTITATIV
  • [8] DIOPHANTINE APPROXIMATION ON ABELIAN-VARIETIES
    FALTINGS, G
    [J]. ANNALS OF MATHEMATICS, 1991, 133 (03) : 549 - 576
  • [9] POLYNOMIAL-EXPONENTIAL EQUATIONS AND LINEAR RECURRENT SERIES .2.
    LAURENT, M
    [J]. JOURNAL OF NUMBER THEORY, 1989, 31 (01) : 24 - 53
  • [10] LAURENT M, 1987, ASTERISQUE, P121