Ricci flow on asymptotically Euclidean manifolds

被引:24
作者
Li, Yu [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
LOGARITHMIC SOBOLEV INEQUALITIES; POSITIVE SCALAR CURVATURE; GENERAL-RELATIVITY; MASS; SOLITONS; PROOF;
D O I
10.2140/gt.2018.22.1837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that if an asymptotically Euclidean manifold with nonnegative scalar curvature has long-time existence of Ricci flow, the ADM mass is nonnegative. We also give an independent proof of the positive mass theorem in dimension three.
引用
收藏
页码:1837 / 1891
页数:55
相关论文
共 50 条
  • [41] η-RICCI SOLUTIONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Pandey, Shashikant
    Singh, Abhishek
    Mishra, Vishnu Narayan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 419 - 434
  • [42] Positive mass theorem for some asymptotically hyperbolic manifolds
    Ammann, Bernd
    Grosse, Nadine
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (01): : 165 - 180
  • [43] Scalar Curvature Rigidity for Asymptotically Locally Hyperbolic Manifolds
    Lars Andersson
    Mattias Dahl
    Annals of Global Analysis and Geometry, 1998, 16 : 1 - 27
  • [44] Scalar curvature rigidity for asymptotically locally hyperbolic manifolds
    Andersson, L
    Dahl, M
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (01) : 1 - 27
  • [45] SOME RESULTS ON *- RICCI FLOW
    Debnath, Dipankar
    Basu, Nirabhra
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1305 - 1313
  • [46] Remarks on Kahler Ricci Flow
    Chen, Xiuxiong
    Wang, Bing
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 335 - 353
  • [47] A NOTE ON CONFORMAL RICCI FLOW
    Lu, Peng
    Qing, Jie
    Zheng, Yu
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (02) : 413 - 434
  • [48] THE RICCI-BOURGUIGNON FLOW
    Catino, Giovanni
    Cremaschi, Laura
    Djadli, Zindine
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (02) : 337 - 370
  • [49] Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature
    Hang, Fengbo
    Wang, Xiaodong
    JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (03) : 628 - 642
  • [50] Metrics with nonnegative Ricci curvature on convex three-manifolds
    Ache, Antonio
    Maximo, Davi
    Wu, Haotian
    GEOMETRY & TOPOLOGY, 2016, 20 (05) : 2905 - 2922