Ricci flow on asymptotically Euclidean manifolds

被引:24
|
作者
Li, Yu [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
LOGARITHMIC SOBOLEV INEQUALITIES; POSITIVE SCALAR CURVATURE; GENERAL-RELATIVITY; MASS; SOLITONS; PROOF;
D O I
10.2140/gt.2018.22.1837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that if an asymptotically Euclidean manifold with nonnegative scalar curvature has long-time existence of Ricci flow, the ADM mass is nonnegative. We also give an independent proof of the positive mass theorem in dimension three.
引用
收藏
页码:1837 / 1891
页数:55
相关论文
共 50 条
  • [21] No breathers theorem for noncompact harmonic Ricci flows with asymptotically nonnegative Ricci curvature
    Chen, Jiarui
    Chen, Qun
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (04) : 1283 - 1292
  • [22] *-CONFORMAL η-RICCI SOLITION ON α-COSYMPLECTIC MANIFOLDS
    Haseeb, Abdul
    Prakasha, D. G.
    Harish, H.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (02): : 165 - 179
  • [23] RICCI SOLITON ON MANIFOLDS WITH COSYMPLECTIC METRIC
    Rani, Savita
    Gupta, Ram Shankar
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (01): : 89 - 98
  • [24] The Area Preserving Willmore Flow and Local Maximizers of the Hawking Mass in Asymptotically Schwarzschild Manifolds
    Koerber, Thomas
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 3455 - 3497
  • [25] A new mass for asymptotically flat manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    ADVANCES IN MATHEMATICS, 2014, 266 : 84 - 119
  • [26] The GBC mass for asymptotically hyperbolic manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (02) : 147 - 151
  • [27] The GBC mass for asymptotically hyperbolic manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 257 - 297
  • [28] Static potentials on asymptotically hyperbolic manifolds
    Wang, Yaohua
    MANUSCRIPTA MATHEMATICA, 2024, 173 (3-4) : 889 - 906
  • [29] Asymptotically Hyperbolic Manifolds with Small Mass
    Dahl, Mattias
    Gicquaud, Romain
    Sakovich, Anna
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (02) : 757 - 801
  • [30] The Sasaki-Ricci Flow and Compact Sasaki Manifolds of Positive Transverse Holomorphic Bisectional Curvature
    He, Weiyong
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 1876 - 1931