Quasi-periodic solutions of forced isochronous oscillators at resonance

被引:21
作者
Liu, Bin [1 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Isochronous oscillators; Repulsive singularity; Invariant curves; Quasi-periodic solutions; Lazer-Landesman conditions; Boundedness of solutions; BOUNDEDNESS; EQUATIONS;
D O I
10.1016/j.jde.2009.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the existence of quasi-periodic Solutions of forced isochronous oscillators with a repulsive singularity, the nonlinearity is a bounded perturbation. Using a variant of Moser's twist theorem of invariant curves, due to Ortega [R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem, Proc. London Math. Soc. 79 (1999) 381-413], we show that there are Many quasi-periodic Solutions and the boundedness of all Solutions. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3471 / 3495
页数:25
相关论文
共 50 条
[41]   Quasi-Periodic Solutions of the Relativistic Toda Hierarchy [J].
Dong Gong ;
Xianguo Geng .
Journal of Nonlinear Mathematical Physics, 2012, 19 :489-523
[42]   Quasi-periodic solutions in nonlinear asymmetric oscillations [J].
Yang, Xiaojing ;
Lo, Kueiming .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (02) :207-220
[43]   The Navier–Stokes Equation with Time Quasi-Periodic External Force: Existence and Stability of Quasi-Periodic Solutions [J].
Riccardo Montalto .
Journal of Dynamics and Differential Equations, 2021, 33 :1341-1362
[44]   Quasi-periodic solutions and sub-harmonic bifurcation of Duffing’s equations with quasi-periodic perturbation [J].
Xu Pengcheng ;
Jing Zhujun .
Acta Mathematicae Applicatae Sinica, 1999, 15 (4) :374-384
[45]   Quasi-periodic solutions of mixed AKNS equations [J].
Geng, Xianguo ;
Xue, Bo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) :3662-3674
[46]   QUASI-PERIODIC SOLUTIONS OF THE RELATIVISTIC TODA HIERARCHY [J].
Gong, Dong ;
Geng, Xianguo .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (04) :489-523
[47]   FORCED QUASI-PERIODIC AND ALMOST-PERIODIC SOLUTION FOR NONLINEAR-SYSTEMS [J].
BERGER, MS ;
CHEN, YY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (12) :949-965
[48]   UNBOUNDED SOLUTIONS AND PERIODIC SOLUTIONS OF PERTURBED ISOCHRONOUS HAMILTONIAN SYSTEMS AT RESONANCE [J].
Capietto, Anna ;
Dambrosio, Walter ;
Ma, Tiantian ;
Wang, Zaihong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (05) :1835-1856
[49]   Quasi-periodic solutions for the general semilinear Duffing equations with asymmetric nonlinearity and oscillating potential [J].
Zhang, Xinli ;
Peng, Yaqun ;
Piao, Daxiong .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (05) :931-946