The development of semi-Markov transportation model

被引:0
|
作者
Mateusz, Zajac [1 ]
Tymoteusz, Budny [2 ]
机构
[1] Wroclaw Univ Technol, PL-50370 Wroclaw, Poland
[2] Maritime Univ, Gdynia, Poland
来源
SAFETY, RELIABILITY AND RISK ANALYSIS: THEORY, METHODS AND APPLICATIONS, VOLS 1-4 | 2009年
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is model of transport system presented in the paper. The opportunities of semi-Markov process definition is included. The system is defined by semi-Markov processes, while functions distributions are assumed. There are attempts to asses factors for different than exponential functions distributions. The paper consist discussion on Weibull and Gamma distribution in semi-Markov calculations. It appears, that some shapes of functions distribution makes computations extremely difficult.
引用
收藏
页码:3237 / +
页数:2
相关论文
共 50 条
  • [21] Criterion of Semi-Markov Dependent Risk Model
    Mo, Xiao Yun
    Yang, Xiang Qun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (07) : 1273 - 1280
  • [22] APPLICATION ISSSUES OF THE SEMI-MARKOV RELIABILITY MODEL
    Rudnicki, Jacek
    POLISH MARITIME RESEARCH, 2015, 22 (01) : 55 - 64
  • [23] Criterion of Semi-Markov Dependent Risk Model
    Xiao Yun MO
    Xiang Qun YANG
    Acta Mathematica Sinica(English Series), 2014, 30 (07) : 1273 - 1280
  • [24] A semi-Markov modulated interest rate model
    D'Amico, Guglielmo
    Manca, Raimondo
    Salvi, Giovanni
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) : 2094 - 2102
  • [25] A Semi-Markov Model with Geometric Renewal Processes
    Jingqi Zhang
    Mitra Fouladirad
    Nikolaos Limnios
    Methodology and Computing in Applied Probability, 2023, 25
  • [26] A Semi-Markov Model with Geometric Renewal Processes
    Zhang, Jingqi
    Fouladirad, Mitra
    Limnios, Nikolaos
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (04)
  • [27] OPTIMAL STOPPING IN A SEMI-MARKOV SHOCK MODEL
    ZUCKERMAN, D
    JOURNAL OF APPLIED PROBABILITY, 1978, 15 (03) : 629 - 634
  • [28] A General Semi-Markov Model for Coupled lifetimes
    Ji, Min
    Zhou, Rui
    NORTH AMERICAN ACTUARIAL JOURNAL, 2019, 23 (01) : 98 - 119
  • [30] Attainability for Markov and Semi-Markov Chains
    Verbeken, Brecht
    Guerry, Marie-Anne
    MATHEMATICS, 2024, 12 (08)