INVERSE PROBLEMS FOR NONLINEAR HYPERBOLIC EQUATIONS

被引:16
作者
Uhlmann, Gunther [1 ,2 ]
Zhai, Jian [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China
关键词
Inverse problems; nonlinear hyperbolic equations; Lorentzian manifolds; UNIQUENESS; ELASTODYNAMICS; WAVES;
D O I
10.3934/dcds.2020380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been considerable progress in recent years in solving inverse problems for nonlinear hyperbolic equations. One of the striking aspects of these developments is the use of nonlinearity to get new information, which is not possible for the corresponding linear equations. We illustrate this for several examples including Einstein equations and the equations of nonlinear elasticity among others.
引用
收藏
页码:455 / 469
页数:15
相关论文
共 40 条
[1]   Boundary regularity for the Ricci equation, geometric convergence, and Gel-fand's inverse boundary problem [J].
Anderson, M ;
Katsuda, A ;
Kurylev, Y ;
Lassas, M ;
Taylor, M .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :261-321
[2]  
BELISHEV MI, 1987, DOKL AKAD NAUK SSSR+, V297, P524
[3]   Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes [J].
Bernal, AN ;
Sánchez, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) :43-50
[5]  
Chen Xi, 2019, ARXIV190205711
[6]   Nonlinear interaction of waves in elastodynamics and an inverse problem [J].
de Hoop, Maarten ;
Uhlmann, Gunther ;
Wang, Yiran .
MATHEMATISCHE ANNALEN, 2020, 376 (1-2) :765-795
[7]   Nonlinear responses from the interaction of two progressing waves at an interface [J].
de Hoop, Maarten ;
Uhlmann, Gunther ;
Wang, Yiran .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02) :347-363
[8]   Finite-amplitude waves in isotropic elastic plates [J].
de Lima, WJN ;
Hamilton, MF .
JOURNAL OF SOUND AND VIBRATION, 2003, 265 (04) :819-839
[9]  
Feizmohammadi A., 2019, ARXIV190312636
[10]  
Feizmohammadi A., 2019, ARXIV190104211