Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area

被引:141
作者
Yang, Kee-Jeong [1 ]
Kim, Sammi [1 ]
Kim, Se-Yun [1 ]
Ahn, Kwangseok [1 ]
Son, Dae-Ho [1 ]
Kim, Seung-Hyun [1 ]
Lee, Sang-Ju [1 ]
Kim, Young-Ill [1 ]
Park, Si-Nae [1 ]
Sung, Shi-Joon [1 ]
Kim, Dae-Hwan [1 ]
Enkhbat, Temujin [2 ]
Kim, JunHo [2 ]
Jeon, Chan-Wook [3 ]
Kang, Jin-Kyu [1 ]
机构
[1] DGIST, Convergence Res Ctr Solar Energy, Daegu 42988, South Korea
[2] Incheon Natl Univ, Dept Phys, Incheon 22012, South Korea
[3] Yeungnam Univ, Sch Chem Engn, Gyeongsangbuk Do 38541, South Korea
基金
新加坡国家研究基金会;
关键词
EARTH-ABUNDANT; ZN-SN; KESTERITE CU2ZNSNS4; LOW-COST; ALLOYS; FILMS;
D O I
10.1038/s41467-019-10890-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For kesterite copper zinc tin sulfide/selenide (CZTSSe) solar cells to enter the market, in addition to efficiency improvements, the technological capability to produce flexible and large-area modules with homogeneous properties is necessary. Here, we report a greater than 10% efficiency for a cell area of approximately 0.5 cm(2) and a greater than 8% efficiency for a cell area larger than 2 cm(2) of certified flexible CZTSSe solar cells. By designing a thin and multi-layered precursor structure, the formation of defects and defect clusters, particularly tin-related donor defects, is controlled, and the open circuit voltage value is enhanced. Using statistical analysis, we verify that the cell-to-cell and within-cell uniformity characteristics are improved. This study reports the highest efficiency so far for flexible CZTSSe solar cells with small and large areas. These results also present methods for improving the efficiency and enlarging the cell area.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Decreased interface defects in Cu2ZnSn(S,Se)4 solar cells via Cd2+&Ag+ double-ion interface deposition [J].
Zhao, Xiangyang ;
Wang, Lingling ;
Wang, Yawei ;
Zhang, Xingyu ;
Fang, Rong ;
Zhou, Yue ;
Guo, Rui ;
Zhang, Xintong ;
Liu, Yichun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 280
[42]   Enhancing performance of Cu2ZnSn(S, Se)4 solar cells via non-uniform gradient and flat bands induced by Cd substitution [J].
Li, Mengge ;
Ma, Ding ;
Wang, Chunkai ;
Wang, Ting ;
Yao, Bin ;
Li, Yongfeng ;
Ding, Zhanhui ;
Sun, Yuting ;
Sun, Xiaofei ;
Zhu, Yan ;
Ding, Ning ;
Shi, Liyuan .
SOLAR ENERGY, 2024, 283
[43]   Fabrication and Characterization of Cu2ZnSn(S, Se)4 with Aluminum Doping by Spray Pyrolysis Followed by Selenization [J].
Huang, Wei-Chih ;
Zeng, Xin ;
Wei, Shih-Yuan ;
Cai, Chung-Hao ;
Lin, Tzu-Ying ;
Wong, Lydia Helena ;
Lai, Chih-Huang .
2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
[44]   Lithium-assisted synergistic engineering of charge transport both in GBs and GI for Ag-substituted Cu2ZnSn(S,Se)4 solar cells [J].
Zhao, Xiangyun ;
Chang, Xiaohuan ;
Kou, Dongxing ;
Zhou, Wenhui ;
Zhou, Zhengji ;
Tian, Qingwen ;
Yuan, Shengjie ;
Qi, Yafang ;
Wu, Sixin .
JOURNAL OF ENERGY CHEMISTRY, 2020, 50 :9-15
[45]   Phase controlled solvothermal synthesis of Cu2ZnSnS4, Cu2ZnSn(S,Se)4 and Cu2ZnSnSe4 Nanocrystals: The effect of Se and S sources on phase purity [J].
Pal, Mou ;
Mathews, N. R. ;
Paraguay-Delgado, F. ;
Mathew, X. .
MATERIALS CHEMISTRY AND PHYSICS, 2015, 166 :201-206
[46]   The Role of Sulfur in Solution-Processed Cu2ZnSn(S,Se)4 and its Effect on Defect Properties [J].
Duan, Hsin-Sheng ;
Yang, Wenbing ;
Bob, Brion ;
Hsu, Chia-Jung ;
Lei, Bao ;
Yang, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (11) :1466-1471
[47]   Sputtering processed highly efficient Cu2ZnSn(S,Se)4 solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy [J].
Gang, Myeng Gil ;
Shin, Seung Wook ;
Hong, Chang Woo ;
Gurav, K. V. ;
Gwak, Jihye ;
Yun, Jae Ho ;
Lee, Jeong Yong ;
Kim, Jin Hyeok .
GREEN CHEMISTRY, 2016, 18 (03) :700-711
[48]   Evolution of Morphology and Composition during Annealing and Selenization in Solution-Processed Cu2ZnSn(S,Se)4 [J].
Clark, James A. ;
Uhl, Alexander R. ;
Martin, Trevor R. ;
Hillhouse, Hugh W. .
CHEMISTRY OF MATERIALS, 2017, 29 (21) :9328-9339
[49]   Band-gap tuning of Cu2ZnSn(S,Se)4 solar cell absorbers via defined incorporation of sulphur based on a post-sulphurization process [J].
Neuwirth, Markus ;
Seydel, Elisabeth ;
Seeger, Jasmin ;
Welle, Alexander ;
Kalt, Heinz ;
Hetterich, Michael .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 :158-165
[50]   Kesterite Cu2ZnSn(S,Se)4 Absorbers Converted from Metastable, Wurtzite-Derived Cu2ZnSnS4 Nanoparticles [J].
Yang, Wei-Chang ;
Miskin, Caleb K. ;
Hages, Charles J. ;
Hanley, Evan C. ;
Handwerker, Carol ;
Stach, Eric A. ;
Agrawal, Rakesh .
CHEMISTRY OF MATERIALS, 2014, 26 (11) :3530-3534