Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area

被引:141
|
作者
Yang, Kee-Jeong [1 ]
Kim, Sammi [1 ]
Kim, Se-Yun [1 ]
Ahn, Kwangseok [1 ]
Son, Dae-Ho [1 ]
Kim, Seung-Hyun [1 ]
Lee, Sang-Ju [1 ]
Kim, Young-Ill [1 ]
Park, Si-Nae [1 ]
Sung, Shi-Joon [1 ]
Kim, Dae-Hwan [1 ]
Enkhbat, Temujin [2 ]
Kim, JunHo [2 ]
Jeon, Chan-Wook [3 ]
Kang, Jin-Kyu [1 ]
机构
[1] DGIST, Convergence Res Ctr Solar Energy, Daegu 42988, South Korea
[2] Incheon Natl Univ, Dept Phys, Incheon 22012, South Korea
[3] Yeungnam Univ, Sch Chem Engn, Gyeongsangbuk Do 38541, South Korea
基金
新加坡国家研究基金会;
关键词
EARTH-ABUNDANT; ZN-SN; KESTERITE CU2ZNSNS4; LOW-COST; ALLOYS; FILMS;
D O I
10.1038/s41467-019-10890-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For kesterite copper zinc tin sulfide/selenide (CZTSSe) solar cells to enter the market, in addition to efficiency improvements, the technological capability to produce flexible and large-area modules with homogeneous properties is necessary. Here, we report a greater than 10% efficiency for a cell area of approximately 0.5 cm(2) and a greater than 8% efficiency for a cell area larger than 2 cm(2) of certified flexible CZTSSe solar cells. By designing a thin and multi-layered precursor structure, the formation of defects and defect clusters, particularly tin-related donor defects, is controlled, and the open circuit voltage value is enhanced. Using statistical analysis, we verify that the cell-to-cell and within-cell uniformity characteristics are improved. This study reports the highest efficiency so far for flexible CZTSSe solar cells with small and large areas. These results also present methods for improving the efficiency and enlarging the cell area.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] A Facile Process for Partial Ag Substitution in Kesterite Cu2ZnSn(S,Se)4 Solar Cells Enabling a Device Efficiency of over 12%
    Gang, Myeng Gil
    Karade, Vijay C.
    Suryawanshi, Mahesh P.
    Yoo, Hyesun
    He, Mingrui
    Hao, Xiaojing
    Lee, In Jae
    Lee, Byeong Hoon
    Shin, Seung Wook
    Kim, Jin Hyeok
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (03) : 3959 - 3968
  • [12] Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells
    Yang, Kee-Jeong
    Sim, Jun-Hyoung
    Son, Dae-Ho
    Kim, Young-Ill
    Kim, Dae-Hwan
    Nam, Dahyun
    Cheong, Hyeonsik
    Kim, SeongYeon
    Kim, JunHo
    Kang, Jin-Kyu
    NANO ENERGY, 2017, 35 : 52 - 61
  • [13] Novel Solution Processing of High-Efficiency Earth-Abundant Cu2ZnSn(S,Se)4 Solar Cells
    Yang, Wenbing
    Duan, Hsin-Sheng
    Bob, Brion
    Zhou, Huanping
    Lei, Bao
    Chung, Choong-Heui
    Li, Sheng-Han
    Hou, William W.
    Yang, Yang
    ADVANCED MATERIALS, 2012, 24 (47) : 6323 - 6329
  • [14] Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell
    Barkhouse, D. Aaron R.
    Gunawan, Oki
    Gokmen, Tayfun
    Todorov, Teodor K.
    Mitzi, David B.
    PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01): : 6 - 11
  • [15] 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks
    Miskin, Caleb K.
    Yang, Wei-Chang
    Hages, Charles J.
    Carter, Nathaniel J.
    Joglekar, Chinmay S.
    Stach, Eric A.
    Agrawal, Rakesh
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (05): : 654 - 659
  • [16] Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu-Zn-Sn-S nanocrystals
    Carter, Nathaniel J.
    Yang, Wei-Chang
    Miskin, Caleb K.
    Hages, Charles J.
    Stach, Eric A.
    Agrawal, Rakesh
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 123 : 189 - 196
  • [17] Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4
    Zhao, Hanyue
    Persson, Clas
    THIN SOLID FILMS, 2011, 519 (21) : 7508 - 7512
  • [18] Cadmium free high efficiency Cu2ZnSn(S, Se)4 solar cell with Zn1-xSnxOy buffer layer
    Asaduzzaman, Md.
    Bahar, Ali Newaz
    Masum, Md. Mohiuddin
    Hasan, Md. Mahmodul
    ALEXANDRIA ENGINEERING JOURNAL, 2017, 56 (02) : 225 - 229
  • [19] Phase segregations and thickness of the Mo(S,Se)2 layer in Cu2ZnSn(S,Se)4 solar cells at different sulfurization temperatures
    Shin, Seung Wook
    Gurav, K. V.
    Hong, Chang Woo
    Gwak, JiHye
    Choi, Hye Rim
    Vanalakar, S. A.
    Yun, Jae Ho
    Lee, Jeong Yong
    Moon, Jong Ha
    Kim, Jin Hyeok
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 : 480 - 487
  • [20] Beyond 10% efficient Cu2ZnSn(S,Se)4 solar cells: Effects of the introduction of SnS powder during selenization process
    Xu, Bin
    Ma, Chuanhe
    Lu, Xiaoshuang
    Liu, Yulin
    Zhang, Qiao
    Chen, Ye
    Yang, Pingxiong
    Chu, Junhao
    Sun, Lin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 210 (210)