Numerical simulation for the 3D seepage flow with fractional derivatives in porous media

被引:37
作者
Liu, Q. [1 ]
Liu, F. [2 ,3 ]
Turner, I. [2 ]
Anh, V. [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
seepage flow; fractional derivative; fractional alternating direction implicit scheme; modified Douglas scheme; stability and convergence; Richardson extrapolation; FINITE-DIFFERENCE METHODS; DIFFUSION EQUATION; APPROXIMATION;
D O I
10.1093/imamat/hxn044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the numerical simulation of the 3D seepage flow with fractional derivatives in porous media is considered under two special cases: non-continued seepage flow in uniform media (NCSF-UM) and continued seepage flow in non-uniform media (CSF-NUM). A fractional alternating direction implicit scheme (FADIS) for the NCSF-UM and a modified Douglas scheme (MDS) for the CSF-NUM are proposed. The stability, consistency and convergence of both FADIS and MDS in a bounded domain are discussed. A method for improving the speed of convergence by Richardson extrapolation for the MDS is also presented. Finally, numerical results are presented to support our theoretical analysis.
引用
收藏
页码:201 / 229
页数:29
相关论文
共 36 条
[31]  
Thomas J. W., 1995, Numerical Partial Differential Equations: Finite Difference Methods, DOI [DOI 10.1007/978-1-4899-7278-1, 10.1007/978-1-4899-7278-1]
[32]  
Thusyanthan N.I., 2003, ACTA GASTROEN LATAM, V38, P105
[33]   Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposition method [J].
Yu, Q. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (01) :138-158
[34]   Numerical approximation of Levy-Feller diffusion equation and its probability interpretation [J].
Zhang, H. ;
Liu, F. ;
Anh, V. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) :1098-1115
[35]   Implicit difference approximation for the time fractional diffusion equation [J].
Zhuang P. ;
Liu F. .
J. Appl. Math. Comp., 2006, 3 (87-99) :87-99
[36]   New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation [J].
Zhuang, P. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :1079-1095