A note on a regularity criterion for the Navier-Stokes equations

被引:2
作者
Skalak, Zdenek [1 ]
机构
[1] Czech Acad Sci, Inst Hydrodynam, Prague 16612, Czech Republic
关键词
Navier-Stokes equations; conditional regularity; optimal regularity criteria;
D O I
10.4064/ap180826-22-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if u is a solution of the Navier-Stokes equations in the whole three-dimensional space and partial derivative(3)u is an element of L-p(0, T; L-q(R-3)), T > 0, where 2/p + 3/q = 1 + 3/q and q is an element of(3, 10/3], then u is regular on (0, T].
引用
收藏
页码:193 / 199
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 2004, Appl. Math.
[2]   SUFFICIENT CONDITIONS FOR THE REGULARITY TO THE 3D NAVIER STOKES EQUATIONS [J].
Cao, Chongsheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) :1141-1151
[3]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[4]   Backward uniqueness for parabolic equations [J].
Escauriaza, L ;
Seregin, G ;
Sverak, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (02) :147-157
[5]   Navier-Stokes equations with regularity in one direction [J].
Kukavica, Igor ;
Ziane, Mohammed .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[6]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[7]  
Namlyeyeva Y., OPTIMAL REGULARITY C
[8]  
Prodi G., 1959, Ann. Mat. Pura Appl, V48, P173, DOI [DOI 10.1007/BF02410664, 10.1007/BF02410664]
[9]  
Robinson J.C., 2016, 3 DIMENSIONAL NAVIER
[10]  
Serrin J., 1963, NONLINEAR PROBLEMS, P69