Modeling Lifetimes by a Stochastic Process Hitting a Critical Point

被引:0
|
作者
Rodrigues, Josemar [1 ]
Cordeiro, Gauss M. [2 ]
De Castro, Mario [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos, SP, Brazil
[2] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
关键词
Carcinogenesis process; First hitting time; Moment; Negative-Binomial distributions; Survival analysis; 62N02; GAMMA-DISTRIBUTION; FAMILY; DISTRIBUTIONS;
D O I
10.1080/03610926.2013.844257
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
First hitting times arise naturally in survival analysis where the underlying stochastic counting process represents the strength of the health of an individual. The patient experiences a clinical endpoint when this process reaches a critical point for the first time. We propose a very flexible and unified first hitting time density function in a stochastic carcinogenesis counting process, and its mathematical properties are investigated. The Poisson and negative binomial first hitting time models are addressed and two examples with real data are presented.
引用
收藏
页码:2570 / 2580
页数:11
相关论文
共 50 条
  • [21] Stochastic Modeling and Optimization of Stragglers
    Farhat, Farshid
    Tootaghaj, Diman Zad
    He, Yuxiong
    Sivasubramaniam, Anand
    Kandemir, Mahmut
    Das, Chita R.
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2018, 6 (04) : 1164 - 1177
  • [22] Bivariate Sarmanov Phase-Type Distributions for Joint Lifetimes Modeling
    Moutanabbir, Khouzeima
    Abdelrahman, Hassan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (02) : 1093 - 1118
  • [23] Modeling bivariate lifetimes based on expected present values of residual lives
    Ortega, Eva-Maria
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (05) : 675 - 684
  • [24] An Augmented Variable Dirichlet Process mixture model for the analysis of dependent lifetimes
    Ungolo, Francesco
    Laub, Patrick J.
    ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2025, 55 (01) : 50 - 75
  • [25] Stochastic modeling of daily precipitation in China
    LIAO Yaoming1
    2. Laboratory of Climate Studies
    3. Earth Sciences Center
    JournalofGeographicalSciences, 2004, (04) : 34 - 43
  • [26] Bayesian semiparametric stochastic volatility modeling
    Jensen, Mark J.
    Maheu, John M.
    JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 306 - 316
  • [27] Stochastic modeling of daily precipitation in China
    Liao Yaoming
    Zhang Qiang
    Chen Deliang
    Journal of Geographical Sciences, 2004, 14 (4) : 417 - 426
  • [28] APPROACHES TO STOCHASTIC MODELING OF WIND TURBINES
    Gevorkyan, Migran N.
    Demidova, Anastasiya V.
    Zaryadov, Ivan S.
    Sobolewski, Robert A.
    Korolkova, Anna V.
    Kulyabov, Dmitry S.
    Sevastianov, Leonid A.
    PROCEEDINGS - 31ST EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2017, 2017, : 622 - 627
  • [29] A Harris process to model stochastic volatility
    Anzarut, Michelle
    Mena, Ramses H.
    ECONOMETRICS AND STATISTICS, 2019, 10 : 151 - 169
  • [30] Baldovin-Stella stochastic volatility process and Wiener process mixtures
    Peirano, P. P.
    Challet, D.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (08)