Optimal control of hemivariational inequalities for nonstationary Navier-Stokes equations

被引:1
作者
Chadli, O. [1 ]
Mohapatra, R. N. [2 ]
机构
[1] Ibn Zohr Univ, Dept Econ, Agadir, Morocco
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Navier– Stokes; nonmonotone boundary conditions; optimal control; equilibrium problems; hemivariational inequalities; EQUILIBRIUM PROBLEMS; VARIATIONAL-INEQUALITIES; ANTIPERIODIC SOLUTIONS; EVOLUTION-EQUATIONS; EXISTENCE;
D O I
10.1080/02331934.2020.1836638
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Optimal control of nonstationary Navier-Stokes equations is studied with nonlinear boundary conditions described by the Clarke subdifferential. Precisely, we aim at minimizing a general functional for a control problem whose state is a solution to a boundary value problem depending on the control itself. Accordingly, the lower level problem is expressed by a hemivariational inequality associated with a nonconvex nonsmooth locally Lipschitz superpotential. The existence of solutions to our problem is then shown via a convergence scheme based on mixed equilibria and a stability result with respect to variations on the control for the dynamic state control system associated with the main control problem.
引用
收藏
页码:1357 / 1388
页数:32
相关论文
共 51 条
  • [1] Optimal control of a quasi-variational obstacle problem
    Adly, Samir
    Bergounioux, Maitine
    Mansour, Mohamed Ait
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (03) : 421 - 435
  • [2] Ahmed N. U., 1992, DYNAM SYSTEMS APPL, V1, P103
  • [3] Mathematical problems in modeling artificial heart
    Ahmed, NU
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 1995, 1 (03) : 245 - 254
  • [4] Mansour MA, 2018, J NONLINEAR CONVEX A, V19, P681
  • [5] On the Fitzpatrick transform of a monotone bifunction
    Alizadeh, M. H.
    Hadjisavvas, N.
    [J]. OPTIMIZATION, 2013, 62 (06) : 693 - 701
  • [6] Aubin J.-P., 1979, MATH METHODS GAME EC
  • [8] Existence and solution methods for equilibria
    Bigi, Giancarlo
    Castellani, Marco
    Pappalardo, Massimo
    Passacantando, Mauro
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 227 (01) : 1 - 11
  • [9] A new solution method for equilibrium problems
    Bigi, Giancarlo
    Castellani, Marco
    Pappalardo, Massimo
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (06) : 895 - 911
  • [10] Blum E, 1994, MATH STUDENT, V63, P123