AN APPLICATION OF FINITE ELEMENT METHOD FOR A MOVING BOUNDARY PROBLEM

被引:4
|
作者
Aksan, Emine Nesligul [1 ]
Karabenli, Hatice [1 ]
Esen, Alaattin [1 ]
机构
[1] Inonu Univ, Fac Arts & Sci, Dept Math, Malatya, Turkey
来源
THERMAL SCIENCE | 2018年 / 22卷
关键词
variable space grid method; boundary immobilization method; collocation finite element method; cubic B-spline basis functions; NUMERICAL-SOLUTION; STEFAN-PROBLEMS;
D O I
10.2298/TSCI170613268A
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Stefan problems called as moving boundary problems are defined by the heat equation on the domain 0 < x < s(t). In these problems, the position of moving boundary s(t) is determined as part of the solution. As a result, they are non-linear problems and thus have limited analytical solutions. In this study, we are going to consider a Stefan problem described as solidification problem. After using variable space grid method and boundary immobilization method, collocation finite element method is applied to the model problem. The numerical solutions obtained for the position of moving boundary are compared with the exact ones and the other numerical solutions existing in the literature. The newly obtained numerical results are more accurate than the others for the time step Delta t = 0.0005, it is also seen from the tables, the numerical solutions converge to exact solutions for the larger element numbers.
引用
收藏
页码:S25 / S32
页数:8
相关论文
共 50 条