Perturbation of eigenvalues due to gaps in two-dimensional boundaries

被引:12
作者
Davis, Anthony M. J.
Smith, Stefan G. Llewellyn
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Univ Calif San Diego, Jacobs Sch Engn, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2007年 / 463卷 / 2079期
关键词
asymptotics; differential equations; diffusion;
D O I
10.1098/rspa.2006.1796
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by problems involving diffusion through small gaps, we revisit two-dimensional eigenvalue problems with localized perturbations to Neumann boundary conditions. We recover the known result that the gravest eigenvalue is O(vertical bar ln epsilon vertical bar(-1)), where e is the ratio of the size of the hole to the length-scale of the domain, and provide a simple and constructive approach for summing the inverse logarithm terms and obtaining further corrections. Comparisons with numerical solutions obtained for special geometries, both for the Dirichlet 'patch problem' where the perturbation to the boundary consists of a different boundary condition and for the gap problem, confirm that this approach is a simple way of obtaining an accurate value for the gravest eigenvalue and hence the long-term outcome of the underlying diffusion problem.
引用
收藏
页码:759 / 786
页数:28
相关论文
共 17 条
[1]  
[Anonymous], 2000, ASYMPTOTIC THEORY EL
[2]  
BANK RE, 1994, PLTMG SOFTWARE PACKA
[3]   Reviving the method of particular solutions [J].
Betcke, T ;
Trefethen, LN .
SIAM REVIEW, 2005, 47 (03) :469-491
[4]   TWO-DIMENSIONAL RESONATORS WITH SMALL OPENINGS [J].
BIGG, GR ;
TUCK, EO .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1982, 24 (JUL) :2-27
[5]   ELECTROMAGNETIC PLANE-WAVE EXCITATION OF AN OPEN-ENDED, FINITE-LENGTH CONDUCTING CYLINDER [J].
DAVIS, AMJ ;
SCHARSTEIN, RW .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1993, 7 (02) :301-319
[6]   Slow flow through a model fibrous porous medium [J].
Davis, AMJ ;
James, DF .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1996, 22 (05) :969-989
[7]   Windows of given area with minimal heat diffusion [J].
Denzler, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (02) :569-580
[9]   Asymptotics beyond all orders for a low Reynolds number flow [J].
Keller, JB ;
Ward, MJ .
JOURNAL OF ENGINEERING MATHEMATICS, 1996, 30 (1-2) :253-265
[10]   Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps [J].
Kolokolnikov, T ;
Titcombe, MS ;
Ward, MJ .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :161-200