Cryogenic composite detectors for the dark matter experiments CRESST and EURECA

被引:4
作者
Roth, S. [1 ]
Ciemniak, C. [1 ]
Coppi, C. [1 ]
Feilitzsch, F. V. [1 ]
Guetlein, A. [1 ]
Isaila, C. [1 ]
Lanfranchi, J. -C. [1 ]
Pfister, S. [1 ]
Potzel, W. [1 ]
Westphal, W. [1 ]
机构
[1] Tech Univ Munich, Phys Dept E15, D-85748 Garching, Germany
关键词
Dark matter; Tungsten TES; Cryogenic phonon and light detectors; Composite detector design; Thermal detector model; NUCLEAR RECOILS;
D O I
10.1016/j.optmat.2008.09.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Weakly interacting massive particles (WIMPs) are candidates for non-baryonic dark matter. WIMPs are supposed to interact with baryonic matter via scattering off nuclei producing a nuclear recoil with energies up to a few 10 keV with a very low interaction rate of similar to 10(-6) events per kg of target material and day in the energy region of interest. The dark matter experiment cryogenic rare event search with superconducting thermometers (CRESST) and the European underground rare event calorimeter array (EURECA) project are aimed at the direct detection of WIMPs with the help of very sensitive modularised cryogenic detectors that basically consist of a transition edge sensor (TES) in combination with a massive absorber crystal. In the CRESST experiment the search for coherent WIMP-nucleon scattering events is validated by the detection of two processes. In the scintillating absorber single crystal, CaWO(4), heat (phonons) and scintillation light are produced and detected with two independent cryogenic detectors: a phonon channel and a separate light channel. The development of such cryogenic detectors and the potential ton-scale production are investigated in this paper. To decouple the TES production from the choice of the target material in order to avoid heating cycles of the absorber crystal and to allow pretesting of the TESs, a composite detector design (CDD) for the detector production has been developed and studied. An existing thermal detector model has been extended to the CDD, in order to investigate, understand, and optimize the performance of composite detectors. This extended model, which has been worked out in detail, can be expected to provide a considerable help when tailoring composite detectors to the requirements of various experiments. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1415 / 1420
页数:6
相关论文
共 50 条
[41]   Detectors for Dark Matter search (review) [J].
Akimov, Dmitry .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 598 (01) :275-281
[42]   Neutrino Physics with Dark Matter Detectors [J].
Dutta, Bhaskar ;
Strigari, Louis E. .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 69, 2019, 69 :137-161
[43]   Superconductors as detectors of particles of dark matter [J].
G. N. Izmailov .
Measurement Techniques, 2008, 51 :1171-1177
[44]   Dark matter search experiments [J].
Wolfgang Rau .
Physics of Particles and Nuclei, 2011, 42 :650-660
[45]   Radioactive background in a cryogenic dark matter experiment [J].
Tomasello, V. ;
Robinson, M. ;
Kudryavtsev, V. A. .
ASTROPARTICLE PHYSICS, 2010, 34 (02) :70-79
[46]   Status of the cryogenic Dark Matter Search experiment [J].
Ahmed, Z. ;
Akerib, D. S. ;
Attisha, M. J. ;
Bailey, C. N. ;
Baudis, L. ;
Bauer, D. A. ;
Brink, P. L. ;
Brusov, P. P. ;
Bunker, R. ;
Cabrera, B. ;
Caldwell, D. O. ;
Chang, C. L. ;
Cooley, J. ;
Crisler, M. B. ;
Cushman, P. ;
Daal, M. ;
DeJongh, F. ;
Dixon, R. ;
Dragowsky, M. R. ;
Duong, L. ;
Ferril, R. ;
Figueroa-Feliciano, E. ;
Filippini, J. ;
Gaitskell, R. J. ;
Golwala, S. R. ;
Grant, D. R. ;
Hennings-Yeomans, R. ;
Holmgren, D. ;
Huber, M. E. ;
Kamat, S. ;
Leclercq, S. ;
Mahapatra, R. ;
Mandic, V. ;
Meunier, P. ;
Mirabolfathi, N. ;
Nelson, H. ;
Ogburn, R. W. ;
Pyle, M. ;
Qiu, X. ;
Ramberg, E. ;
Rau, W. ;
Reisetter, A. ;
Ross, R. R. ;
Saab, T. ;
Sadoulet, B. ;
Sander, J. ;
Schnee, R. W. ;
Seitz, D. N. ;
Serfass, B. ;
Sundqvist, K. M. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (3-4) :800-805
[47]   Status of the Cryogenic Dark Matter Search Experiment [J].
Z. Ahmed ;
D. S. Akerib ;
M. J. Attisha ;
C. N. Bailey ;
L. Baudis ;
D. A. Bauer ;
P. L. Brink ;
P. P. Brusov ;
R. Bunker ;
B. Cabrera ;
D. O. Caldwell ;
C. L. Chang ;
J. Cooley ;
M. B. Crisler ;
P. Cushman ;
M. Daal ;
F. DeJongh ;
R. Dixon ;
M. R. Dragowsky ;
L. Duong ;
R. Ferril ;
E. Figueroa-Feliciano ;
J. Filippini ;
R. J. Gaitskell ;
S. R. Golwala ;
D. R. Grant ;
R. Hennings-Yeomans ;
D. Holmgren ;
M. E. Huber ;
S. Kamat ;
S. Leclercq ;
R. Mahapatra ;
V. Mandic ;
P. Meunier ;
N. Mirabolfathi ;
H. Nelson ;
R. W. Ogburn ;
M. Pyle ;
X. Qiu ;
E. Ramberg ;
W. Rau ;
A. Reisetter ;
R. R. Ross ;
T. Saab ;
B. Sadoulet ;
J. Sander ;
R. W. Schnee ;
D. N. Seitz ;
B. Serfass ;
K. M. Sundqvist .
Journal of Low Temperature Physics, 2008, 151 :800-805
[48]   Results from 730 kg days of the CRESST-II Dark Matter search [J].
G. Angloher ;
M. Bauer ;
I. Bavykina ;
A. Bento ;
C. Bucci ;
C. Ciemniak ;
G. Deuter ;
F. von Feilitzsch ;
D. Hauff ;
P. Huff ;
C. Isaila ;
J. Jochum ;
M. Kiefer ;
M. Kimmerle ;
J.-C. Lanfranchi ;
F. Petricca ;
S. Pfister ;
W. Potzel ;
F. Pröbst ;
F. Reindl ;
S. Roth ;
K. Rottler ;
C. Sailer ;
K. Schäffner ;
J. Schmaler ;
S. Scholl ;
W. Seidel ;
M. v. Sivers ;
L. Stodolsky ;
C. Strandhagen ;
R. Strauß ;
A. Tanzke ;
I. Usherov ;
S. Wawoczny ;
M. Willers ;
A. Zöller .
The European Physical Journal C, 2012, 72
[49]   Detectors of the Cryogenic Dark Matter Search: Charge Transport and Phonon Emission in Ge 〈100〉 Crystals at 40 mK [J].
K. M. Sundqvist ;
B. Sadoulet .
Journal of Low Temperature Physics, 2008, 151 :443-447
[50]   Direct detection searches for dark matter particles using superheated bubble chambers and cryogenic liquid argon detectors [J].
Krauss, Carsten ;
Viel, Simon .
CANADIAN JOURNAL OF PHYSICS, 2025, 103 (08) :704-716