Cryogenic composite detectors for the dark matter experiments CRESST and EURECA

被引:4
作者
Roth, S. [1 ]
Ciemniak, C. [1 ]
Coppi, C. [1 ]
Feilitzsch, F. V. [1 ]
Guetlein, A. [1 ]
Isaila, C. [1 ]
Lanfranchi, J. -C. [1 ]
Pfister, S. [1 ]
Potzel, W. [1 ]
Westphal, W. [1 ]
机构
[1] Tech Univ Munich, Phys Dept E15, D-85748 Garching, Germany
关键词
Dark matter; Tungsten TES; Cryogenic phonon and light detectors; Composite detector design; Thermal detector model; NUCLEAR RECOILS;
D O I
10.1016/j.optmat.2008.09.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Weakly interacting massive particles (WIMPs) are candidates for non-baryonic dark matter. WIMPs are supposed to interact with baryonic matter via scattering off nuclei producing a nuclear recoil with energies up to a few 10 keV with a very low interaction rate of similar to 10(-6) events per kg of target material and day in the energy region of interest. The dark matter experiment cryogenic rare event search with superconducting thermometers (CRESST) and the European underground rare event calorimeter array (EURECA) project are aimed at the direct detection of WIMPs with the help of very sensitive modularised cryogenic detectors that basically consist of a transition edge sensor (TES) in combination with a massive absorber crystal. In the CRESST experiment the search for coherent WIMP-nucleon scattering events is validated by the detection of two processes. In the scintillating absorber single crystal, CaWO(4), heat (phonons) and scintillation light are produced and detected with two independent cryogenic detectors: a phonon channel and a separate light channel. The development of such cryogenic detectors and the potential ton-scale production are investigated in this paper. To decouple the TES production from the choice of the target material in order to avoid heating cycles of the absorber crystal and to allow pretesting of the TESs, a composite detector design (CDD) for the detector production has been developed and studied. An existing thermal detector model has been extended to the CDD, in order to investigate, understand, and optimize the performance of composite detectors. This extended model, which has been worked out in detail, can be expected to provide a considerable help when tailoring composite detectors to the requirements of various experiments. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1415 / 1420
页数:6
相关论文
共 50 条
[31]   Cryogenic Ge Detectors for Dark Matter Search: Surface Event Rejection with Ionization Signals [J].
X. Defay ;
A. Broniatowski ;
A. Juillard ;
S. Marnieros ;
M. Chapellier ;
L. Dumoulin ;
S. Collin ;
L. Bergé ;
F. Lalu ;
X. F. Navick .
Journal of Low Temperature Physics, 2008, 151 :896-901
[32]   Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter [J].
Foerster, N. ;
Broniatowski, A. ;
Eitel, K. ;
Marnieros, S. ;
Paul, B. ;
Piro, M-C. ;
Siebenborn, B. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (3-4) :845-851
[33]   Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter [J].
N. Foerster ;
A. Broniatowski ;
K. Eitel ;
S. Marnieros ;
B. Paul ;
M.-C. Piro ;
B. Siebenborn .
Journal of Low Temperature Physics, 2016, 184 :845-851
[34]   Calibration of the EDELWEISS cryogenic heat-and-ionization germanium detectors for dark matter search [J].
Martineau, O ;
Benoît, A ;
Bergé, L ;
Broniatowski, A ;
Chabert, L ;
Chambon, B ;
Chapellier, M ;
Chardin, G ;
Charvin, P ;
De Jésus, M ;
Di Stefano, P ;
Drain, D ;
Dumoulin, L ;
Gascon, J ;
Gerbier, G ;
Gerlic, E ;
Goldbach, C ;
Goyot, M ;
Gros, M ;
Hadjout, JP ;
Hervé, S ;
Juillard, A ;
de Lesquen, A ;
Loidl, M ;
Mallet, J ;
Marnieros, S ;
Mirabolfathi, N ;
Mosca, L ;
Navick, XF ;
Nollez, G ;
Pari, P ;
Riccio, C ;
Sanglard, V ;
Schoeffel, L ;
Stern, M ;
Vagneron, L .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 530 (03) :426-439
[35]   ZnWO4 crystals as detectors for 2β decay and dark matter experiments [J].
Danevich, FA ;
Kobychev, VV ;
Nagorny, SS ;
Poda, DV ;
Tretyak, VI ;
Yurchenko, SS ;
Zdesenko, YG .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 544 (03) :553-564
[36]   Experiments on direct dark matter search with two-phase emission detectors [J].
Bolozdynya, A. I. .
FUNDAMENTAL RESEARCH IN PARTICLE PHYSICS AND COSMOPHYSICS, 2015, 74 :405-410
[37]   Composite CaWO4 Detectors for the CRESST-II Experiment [J].
Kiefer, M. ;
Angloher, G. ;
Bauer, M. ;
Bavykin, I. ;
Bento, A. ;
Brown, A. ;
Bucci, C. ;
Ciemniak, C. ;
Coppi, C. ;
Deuter, G. ;
von Feilitzsch, F. ;
Hauff, D. ;
Henry, S. ;
Huff, P. ;
Imber, J. ;
Ingleby, S. ;
Isaila, C. ;
Jochum, J. ;
Kimmerle, M. ;
Kraus, H. ;
Lanfranchi, J. -C. ;
Lang, R. F. ;
Malek, M. ;
McGowan, R. ;
Mikhailik, V. B. ;
Pantic, E. ;
Petricca, F. ;
Pfister, S. ;
Potzel, W. ;
Proebst, F. ;
Roth, S. ;
Rottler, K. ;
Sailer, C. ;
Schaffner, K. ;
Schmaler, J. ;
Scholl, S. ;
Seidel, W. ;
Stodolsky, L. ;
Tolhurst, A. J. B. ;
Usherov, I. ;
Westphal, W. .
LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 :651-+
[38]   Development of cryogenic phonon detectors based on CaMoO4 and ZnWO4 scintillating crystals for direct dark matter search experiments [J].
Bavykina, I. ;
Angloher, G. ;
Hauff, D. ;
Kiefer, M. ;
Petricca, F. ;
Proebst, F. .
OPTICAL MATERIALS, 2009, 31 (10) :1382-1387
[39]   COMPOSITE DARK MATTER AND PUZZLES OF DARK MATTER SEARCHES [J].
Khlopov, M. Y. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (8-10) :1385-1395
[40]   Superconductors as detectors of particles of dark matter [J].
Izmailov, G. N. .
MEASUREMENT TECHNIQUES, 2008, 51 (11) :1171-1177