Acoustic and Shallow Water Wave Propagation with Irregular Dissipation

被引:3
作者
Munoz, J. C. [1 ]
Ruzhansky, M. [2 ,3 ,4 ]
Tokmagambetov, N. [5 ,6 ]
机构
[1] Univ Valle, Dept Math, Cali, Colombia
[2] Imperial Coll, Dept Math, London, England
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[4] Queen Mary Univ London, Sch Math Sci, London, England
[5] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
[6] Inst Math & Math Modeling, Alma Ata, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
acoustic equation; shallow water; Cauchy problem; dissipative wave equation; EQUATION;
D O I
10.1134/S0016266319020114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Questions related to very weak solutions of physical models of acoustic and shallow water wave propagation with singular dissipation are studied. The existence of a new type of solutions is proved. An existence theorem for a very weak solution of the problem is obtained. Finally it is shown that very weak solutions are consistent with classical ones in a certain sense, provided that the latter exist.
引用
收藏
页码:153 / 156
页数:4
相关论文
共 18 条
[1]   FREQUENCY CONTENT OF RANDOMLY SCATTERED SIGNALS [J].
ASCH, M ;
KOHLER, W ;
PAPANICOLAOU, G ;
POSTEL, M ;
WHITE, B .
SIAM REVIEW, 1991, 33 (04) :519-625
[2]   THE ACCURACY OF THE ODOHERTY-ANSTEY APPROXIMATION FOR WAVE-PROPAGATION IN HIGHLY DISORDERED STRATIFIED MEDIA [J].
BERLYAND, L ;
BURRIDGE, R .
WAVE MOTION, 1995, 21 (04) :357-373
[3]   THE ONE-DIMENSIONAL INVERSE PROBLEM OF REFLECTION SEISMOLOGY [J].
BUBE, KP ;
BURRIDGE, R .
SIAM REVIEW, 1983, 25 (04) :497-559
[4]   SPREADING OF A PULSE TRAVELLING IN RANDOM MEDIA [J].
Clouet, J. F. ;
Fouque, J. P. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1083-1097
[5]   Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary [J].
Delgado, Julio ;
Ruzhansky, Michael ;
Tokmagambetov, Niyaz .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (06) :758-783
[6]   Hyperbolic Second Order Equations with Non-Regular Time Dependent Coefficients [J].
Garetto, Claudia ;
Ruzhansky, Michael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (01) :113-154
[7]   On convolutions in Hilbert spaces [J].
Kanguzhin, B. ;
Ruzhansky, M. ;
Tokmagambetov, N. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2017, 51 (03) :221-224
[8]   Beyond effective medium theory: Pulse stabilization for multimode wave propagation in high-contrast layered media [J].
Lewicki, P ;
Burridge, R ;
deHoop, MV .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (01) :256-276
[9]  
O'doherty R., 1971, GEOPHYS PROSPECT, V19, P430, DOI [10.1111/j.1365-2478.1971.tb00610.x, DOI 10.1111/J.1365-2478.1971.TB00610.X]
[10]  
Oberguggenberger M, 1992, MULTIPLICATION DISTR